
CprE 381 – Computer Organization and

Assembly-Level Programming

MIPS Pipelined Processor w/wo Data Dependencies
Author: Samuel Ferguson

Pipeline Register Signals

IF/ID Stage ID/EX Stage EX/MEM Stage MEM/WB Stage

Flush Flush Flush Flush

Stall Stall Stall Stall

PC+4 Reg Write Reg Write Reg Write

Instruction MemtoReg MemtoReg MemtoReg

 Branch Branch DMEM data out

 BranchNE Mem Write DMEM address in

 MemWrite ALUout Reg Write Address

 RegDst ALU in B JAL from Ctrl

 ALUop from Ctrl Rs PC + 4

 ALUSrc Rt

 Register rs Data Reg Write Address

 Register rt Data JAL from Ctrl

 Imed Jump from Ctrl

 Reg Write Address PC + 4

 Rs

 Rt

 Jump from Ctrl

 JAL from Ctrl

 PC+4

 Branch Address

Pipelined Register Signals Waveform

PC + 4 is the only signal that propagates through all four stages of the pipeline because it is needed for the Jump and

Link instruction to change the register write data to the PC +4 data when the instruction was executed. As you can see

in the waveform, the PC+4 signal propagates from if_id_PC_4 to mem_wb_pc_4 four cycles later. The same is done

with the next PC + 4 value of x8 and can be seen directly after each highlighted PC + 4 signal.

This is the schematic of the pipelined MIPS processor. The main challenges I faced with implementing the pipelined

processor was pipelining address instructions such as Jump And Link and Branch. The Jump And Link instruction

needed to be pipelined through all four registers to that it could store the address to register 31. The Branch instruction

was pipelined to the EX stage where the ALU could calculate the Zero. For the assembly level instructions I needed to

add three nops after each RAW instruction because that was the amount of registers between the WB stage and the ID

stage. For jump and JAL instructions, I needed to use one nop so that the ID stage could jump without loading an

instruction into the IF/ID register. I needed three nops after branch instructions because I needed to stop instructions

from being loaded into the IF/ID register and ID/EX register and then nop for one more cycle to clear the current PC

address. The jump register instruction needed two nops after the instruction to clear the PC value and then stop the

IF/ID register from loading in a false instruction.

Demonstration of Instructions without data dependency handling.

ADDI

ADDI $1, $0, 1 (RED)

ADDI $2, $0, 2 (YELLOW)

ADD & SUB & ADDU & SUBU

Add $11, $3, $4 (RED) #Place 3+4=7 in $11

Addu $12, $5, $10 (YELLOW) #Place -3 + 5= 2 in $12

Sub $13, $7, $4 #Place 7-4=3 in $13 (RED)

Subu $14, $10, $5 #Place -3-5=-8 in $14 (YELLOW)

BNE

Looper:

 add $30, $30, $1 (RED) #Add 1 to $30 until $30 == 3

 nop

 nop

 nop

 bne $30, $3, Looper (YELLOW)

nop

nop

nop

add $11, $3, $4 (BLUE) # Place 7 in $11

Iteration 1

Iteration 2

Iteration 3

AND & OR & XOR & NOR

and $15, $3, $7 (RED) #Place 3 in $15

or $16, $3, $7 (YELLOW) #Place 7 in $16

xor $17, $3, $7 (RED) #Place 4 in $17

nor $18, $3, $7 (YELLOW) #Place a -8 in $18

SLT & SLTU & SLL & SLV & SRL & SRLV

slt $19, $3, $7 (RED) #Place 1 in $19

sltu $20, $10, $3 (YELLOW) #Place 0 in $20

sll $21, $7, 2 (RED) #place 28 in $21

sllv $22, $7, $2 (YELLOW) #place 28 in $22

srl $23, $7, 2 (RED) #Place 1 in $23

srlv $24, $7, $2 (YELLOW) #place 1 in $24

SRA & SRV

sra $25, $3, 2 #Sift x3 sra 2 bits to right (RED)

srav $26, $3, $2 #shift x3 sra 2 bits to the right (YELLOW)

BEQ & LUI

Looper_2:

 add $30, $30, $1 (RED) #Add 1 to $30 and branch if $30 == 3

 nop

 nop

 nop

 beq $30, $3, Looper_2 (YELLOW) #$30 = 1 so will continue

nop

nop

nop

lui $27, 5 (BLUE) #Place x00050000 in $27

ANDI & ORI & XORI & SLTI & SLTIU

andi $15, $5, (RED) 7 #Place 5 in $15

ori $16, $3, 7 (YELLOW) #Place 7 in $16

xori $17, $3, 7 (RED) #Place 4 in $17

slti $19, $3, 7 (YELLOW) #Place 1 in $19

sltiu $20, $10, 3 (RED) #Place 0 in $20

LW & SW

sw $27, 0($17) (RED) #Place x00050000 in address 4

sw $21, 4($17) (YELLOW) #Place x1c in address 8

lw $21, 0($17) (RED) #Place x00050000 in $21

lw $22, 4($17) (YELLOW) #Place x1c in $22

Jump

j skip_add (RED)

nop

add $21, $22, $0 #Place x1c in $21(THIS SHOULD BE SKIPPED)

skip_add:

 add $21, $0, $0 (YELLOW) #Place x0 in $21

JAL & JR

jal task (RED)

nop

task: #Loops until $21 equals 3

 add $21, $21, 1 (YELLOW) #increment $21 by 1 three times

 nop

 nop

 nop

 beq $21, $3, exit_task (BLUE)

 nop

 nop

 nop

 jr $ra (RED)

nop

nop

exit_task:

addi $2, $0, 10 (ORANGE) # Place "10" in $v0 to signal an "exit" or "halt"

Overall the new forwarding unit and Hazard control unit have completely gotten rid of the nops in the code. However,

branch changes include register flushing. So, there are intermediate nops being added to the instructions to

accommodate for the delay of getting the new instruction addresses. The forwarding unit has allowed for a massive

reduction in the amount of nops needed in the assembly level instruction and does not require any flushing or stalls

except for instructions that are four apart. This allows for a much greater speedup in the overall processor.

Demonstration of an assembly bubble sort application to be run on processor.

The order of values stored in memory are 1, 9, 6, 3, 5, 8, -3, 11, 2, 10. This is the starting order the values are sorted

from.

Once sorted, the values are ordered to -3, 1, 2, 3, 5, 6, 8, 9, 10, 11.

Mars simulation showed victory when running the code for validation in processor.

Now that the MARs result confirms the validity of our program, I can run the testbench program to compare the

MARs output and our processor’s output. So, at the end of the end of bubble sort application, I added a lw instruction

for each address to display the data values in sequential order.

Timing of Processor without dependency handling.

The maximum frequency is 50.5 MHz. The critical path is 22.751 ns, it goes through id_ex_register to the ALU, to

the instruction_ctrl_mod, to finally the instruction_address_module.

High-level schematic drawing of the interconnection between components for the MIPS Hardware-scheduled

pipelined processor with data dependency handling.

Demonstration of Instructions with data dependency handling.
ADDI

addi $1, $0, 1 (RED) #Place 1 in $1

addi $2, $0, 2 (YELLOW) #Place 2 in $2

ADD & SUB & ADDU & SUBU

Add $11, $3, $4 (RED) #Place 3+4=7 in $11

Addu $12, $5, $10 (YELLOW) #Place -3 + 5= 2 in $12

Sub $13, $7, $4 (RED) #Place 7-4=3 in $13

Subu $14, $10, $5 (YELLOW) #Place -3-5=-8 in $14

BNE

Looper:

 add $30, $30, $1 (RED) #add 1 to $30 unitl $30 == 1

 bne $30, $3, Looper (YELLOW)

add $11, $3, $4 (BLUE) #Place 7 in $11

AND & OR & XOR & NOR

and $15, $3, $7 (RED) #Place 3 in $15

or $16, $3, $7 (YELLOW) #Place 7 in $16

xor $17, $3, $7 (RED) #Place 4 in $17

nor $18, $3, $7 (YELLOW) #Place a -8 in $18

SLT & SLTU & SLL & SLV & SRL & SRLV

slt $19, $3, $7 (RED) #Place 1 in $19

sltu $20, $10, $3 (YELLOW) #Place 0 in $20

sll $21, $7, 2 (RED) #place 28 in $21

sllv $22, $7, $3 (YELLOW) #place 56 in $22

srl $23, $7, 2 (RED) #Place 1 in $23

srlv $24, $7, $2 (YELLOW) #place 1 in $24

SRA & SRAV

sra $25, $3, 2 #Sift x3 sra 2 bits to right (RED)

srav $26, $3, $2 #shift x3 sra 2 bits to the right (YELLOW)

BEQ & LUI

Looper_2:

 add $30, $30, $1 (RED) #Add 1 to $20 and branch if $30 == 3

 beq $30, $3, Looper_2 (YELLOW) #$30 = 1so will continue

lui $27, 5 (BLUE) #Place x00050000 in $27

ANDI $ ORI & XORI & SLTI & SLTIU

andi $15, $5, (RED) 7 #Place 5 in $15

ori $16, $3, 7 (YELLOW) #Place 7 in $16

xori $17, $3, 7 (RED) #Place 4 in $17

slti $19, $3, 7 (YELLOW) #Place 1 in $19

LW & SW

sw $27, 0($17) (RED) #Place x00050000 in address 4

sw $21, 4($17) (YELLOW) #Place x1c in address 8

lw $21, 0($17) (RED) #Place x00050000 in $21

lw $22, 4($17) (YELLOW) #Place x1c in $22

Jump

j skip_add (RED)

add $21, $22, $0 #Place x1c in $21 (THIS SHOULD BE SKIPPED)

skip_add:

 add $21, $0, $0 (YELLOW) #Place x0 in $21

jal task (BLUE)

JAL & JR

jal task (RED)

task: #Loops until $21 equals 3

 add $21, $21, 1 (YELLOW) #increment $21 by 1 three times

 beq $21, $3, exit_task (BLUE)

 jr $ra (RED)

exit_task:

addi $2, $0, 10 (ORANGE) # Place "10" in $v0 to signal an "exit" or "halt"

BUBBLE SORT without nops

Bubble sort was reintroduced without the majority of the nops except for two nops for the data dependencies pertaining to

loading from data memory (lw).

From the waveform, the stored values are still in the correct order of addresses.

Address Value

X10010000 xFFFFFFFD

X10010004 x00000001

X10010008 x00000002

X1001000c x00000003

X10010010 x00000005

X10010014 x00000006

X10010018 x00000008

X1001001c x00000009

X10010020 x0000000A

X10010024 x0000000B

FORWARD DEPENDENCIES

add $11, $1, $2 #Place 3 in $11 (RED)

add $12, $11, $1 #Place 4 in $12 RAW $11 (YELLOW)

add $13, $11, $1 #Place 4 in $13 RAW $11 (RED)

add $14, $11, $1 #Place 4 in $14 RAW $11 (YELLOW)

add $13, $11, $12 #Place 7 in $13 RAW $11 & $12 (RED)

From the wave form, you can see that the register values are being forwarded through the mux signals connected to the

ALU when there is a read after write.

HAZARD DETECTION

Jump & JAL

j skip_add (RED)

add $21, $22, $0 #Place x1c in $21 (THIS SHOULD BE SKIPPED)

skip_add:

add $21, $0, $0 (YELLOW) #Place x0 in $21

jal task (BLUE)

As you can see, based off the waveform, when a Jump instruction is called, the ID/EX register is flushed to erase the

bogus instruction.

Branch

Looper_2:

add $30, $30, $1 (RED) #Add 1 to $20 and branch if $30 == 3

beq $30, $3, Looper_2 (YELLOW) #$30 = 1so will continue

lui $27, 5 (BLUE) #Place x00050000 in $27

As you can see the IF/ID register is flushed and the PC is stalled when a branch instruction is sent from the control unit to

the hazard control unit.

JR

jal task (RED)

task: #Loops until $21 equals 3

add $21, $21, 1 (YELLOW) #increment $21 by 1 three times

beq $21, $3, exit_task (BLUE)

jr $ra (RED)

exit_task:

addi $2, $0, 10 (ORANGE) # Place "10" in $v0 to signal an "exit" or "halt"

From the waveform, after the jr is called the IF/ID register is flushed on the following clock cycle to erase the bogus

instruction.

Timing Report of Synthesis with data dependency handling.

The maximum frequency of the updated processor is 35.46MHz. The critical path is 31.141ns and follows: ID/EX register

to the forwarding unit, forwarding unit to the Mux_B_forwarding unit, from Mux B to ALU, from the ALU to the hazard

detection unit, and finally from hazard detection to the IF/ID register.

To improve the frequency further, I would need to redesign the hazard detection unit to use less resets because this only

adds to the overall CPI and would also reduce the critical path length in the processor.

