EE 465: Final Project

NOAA Module Report

Professor: Dr. Ahamed Maruf
TA: Shuo Xie

Abraham Steenhoek, Samuel Ferguson, Sriram Nithin Gopal Lanka

11-21-2020

Introduction

In the agricultural space, embedded systems are always in high demand. This is due to their
customizability to fit many different problems, and their modularity to work with other systems. In this
project, we are given the task to calculate the moving average and moving standard deviation of the
current temperature. Our module is provided the current temperature from an external source (i.e. a
sensor from another system) and will transmit the moving average or standard deviation using an
external transmitter. Our task is to build the module that performs the calculations to determine the
moving average and standard deviation.

Design Description
We expressed the moving average the moving standard deviation as follows:

N = min (n, 14) (where n is the number of samples taken since reset)

1 n
Tavg = Nz T;
i=1

n n
1 1
0= NZ(TL' - Tavy)z = N(Z(ﬁ)) - Tc%vg
i=1 i=1

We used one iteration of the Babylonian method to square root of the variance to find the standard
deviation in the equation above.

1 V
vV E—(6'+7>
2 o

Where & is a guess of v/V. Using these given equations, we went through the following derivation to
obtain a workable expression of the moving standard deviation:

VW=0o Tsum = Z?:l T; qurdsum = Z?=1(Ti2)
N 1/, + V
723(0+3)
1 1 12
1 . N(?=1(Ti2)) - Tc%vg 1 6%+ N (qurdsum) - (N) (Tsum)z
g=51° + P =3 5

Using this reworked equation, we can calculate the moving standard deviation without having to
calculate the variance if we’ve been given an initial 6 value. Additionally, this minimizes the number of
divisions for our calculation to 1 division, making it possible to delay the division until the end of the
calculation to avoid propagating roundoff errors.

Schematics

In our design, we had 3 separate modules: a register file, a calculator for the standard deviation
numerator and denominator, and a top-level module to tie the two modules together and perform the
division necessary to get the output.

Register File . |
RESET
12
TN ——
SAMPLE i
cLK

Figure 1: Schematic of register file

The register file stores 14 sampled temperature in the order that they were sampled in. On the rising
CLK edge, when the SAMPLE signal is high, the module will store the incoming temperature in DFFO, and
transfer the value in DFFO into DFF1, until DFF13 has been filled. Since we only keep track of 14
temperatures, the value in DFF13 is discarded when a new temperature is measured. This same
procedure is used to store the square of each incoming temperature. The sum of all measured temps,
and squared temps, is calculated and updated every time a new sample is taken as well.

| L Nivectag

= 2 ¥
,SW‘--SQMO:
{
Tsum é A

35
2 A S —— Denpmireta,

Figure 2: Schematic of Standard Deviation numerator/denominator calculator

The standard deviation numerator and denominator calculator receives the necessary inputs to
calculate the numerator:

_(n2 ., A2 2
Onumerator = (N *0° + (N * qurdsum) - (Tsum))
And the denominator:
_ 2 A
Odenominator = 2 * N° % &

We opted for a design that does not calculate on a CLK signal, in order to try and provide simplicity
when integrating into the NOAA module by not having to worry about another clock signal to
coordinate.

NOAA Module

5b

Figure 3: Schematic of top-level module

In designing this NOAA module, we decided to break the calculation into two stages. This gave us room
to perform some simple switching optimizations which will be described later.

Because the SAMPLE signal is placed in a register, and the register file also uses registers and works off
of SAMPLE, we know that with our design, it will take at least 2 clock cycles to calculate the first output.
However, any output can be calculated in 1 clock cycle after the first output. This means that the user
can input new temperatures on every clock cycle, and the correct output will be generated 2 clock cycles
later. Since the calc_state[] reg is only used to provide the correct state upon reset, it is not elaborated
in the schematic. After the first 2 clock cycles, the calc_state[] variable will always be 3 (2'b11), so it is
basically ignored after reset.

As a new temperature sample is taken the N value is incremented until it reaches 14.

The 2 clock cycles represent the 2 stages in the design: (1) loading the variables needed to calculate the

output, and (2) calculating the output, and updating the @ value if necessary. Because it will take 2 clock
cycles to calculate the first output, the mode must be preserved for 2 clock cycles, hence the use of the

model and mode2 regs.

In the first stage, the numerator and denominator are chosen based on the mode requested, which is
model. We can select the appropriate numerator/denominator with a mux using mode1 as the select
signal. If model =1, then the numerator and denominator will come from the standard deviation
numerator/denominator calculator, otherwise the numerator is the sum of the temperatures (Tsum)
and the denominator is the number of samples taken(N).

In order to make sure the answer was rounded correctly, we left-shifted the numerator value by 1 bit
and checked the LSB of the left-shifted value. We rounded up if the LSB = 1 by adding 1 to the top 12 bits

of the left-shifted value. While this isn’t a perfect solution, for our use case it was the simplest to
implement.

Since we only want to update the @ value when we have calculated a new standard deviation, we only
want to replace it when the mode2 = 1, because mode2 is the saved mode from when the initial request
was made. Additionally, we do not want to calculate a new standard deviation unless the user requests
one, so the inputs used to calculate o: [@, N, Tsum, Tsum_square], should not be updated unless the
mode for that request is 1. This can be done by multiplexing these values with the mode1 signal, and by
multiplexing the @ value with AND(model, mode2). The reason that @ needs a special mux is if case the
user requests multiple standard deviations in a row, the & must be updated only after a standard
deviation has been calculated first, which is when mode2 is set to one, which is a clock cycle behind
model. This gives us the added benefit of saving switching power, because the standard deviation is
only being calculated when it is requested, not every clock cycle.

When a new standard deviation has been calculated, we save that value as the @ for our next standard
deviation calculation. Since the @ value is seen as a “guess” of the standard deviation, it seemed to us
that using the previous @ was the most accurate guess we could make without creating some other kind
of external formula. This saved us from having to calculate the variance that was given in the report as
well, which could have required extra divisions.

RTL Compiler Reports
RTL synthesis has been performed on the NOAA_module.v file and the resulting schematics with timing,
power and area report are illustrated below.

Figure 4 RTL synthesized circuit schematic

012238/2ZN
012222/A
g12222/2ZN
012187/B1
012187/ZN
012176/A1
012176/ ZN
012171/C
012171/ZN
012144/B1
012144/2ZN
012013/B1
1 gl2013/ZN
4 gl1974/B
011974/2ZN
011968/A
I 011968/2ZN
011964/A
1 g11964/ZN
I 911962/A
011962/ZN
011960/A
011960/ ZN
011958/A
011958/ ZN
011956/A
011956/ ZN
011954/A
011954/ZN
013553/A1
013553/Z

g2988/A1

g2988/Z

numerator_store reg[31]/D <<<
numerator_store reg[31]/CP

MAOI222D1 3 4.5
MAOIZ222D1 3 4.5
MAOIZ22D1 3 3.1
NR2D1 1 0.8
A0I221DO 2 2.4
MAOI22D1 4 4.7
MOAI22D1 2 3.1
MAOI222D1 2 3.3
MAOI222D1 2 3.4
MAOIZ222D1 2 3.3
MAOIZ222D1 2 3.4
MAOIZ22D1 2 3.3
MAOI222D1 2 3.3
MAOI222D1 2 3.3
MAOI222D1 2 3.3
XOR3D1 1 1.2

csa tree calc num sub 12 64 groupi/out @[29]

AN2XD1 1 1.0
DFKCNQD1
setup

150

91

47

234

176

95

122

149

149

122

148

123

32

34

Cost Group : 'CLK' (path_group
Timing slack : 952285ps
Start-point
End-point

Figure 5 RTL timing report

"CLK")

denominator store reg[19]/CP
numerator_store reg[31]/D

Generated by:
Generated on: Nov 17 2020
Module: NOAA module
Technology library:

Genus (TM) Synthesis Solution 19.10-p8062_1

06:38:20 pm

tcbn6sgpluswe 121

Operating conditions: WCCoM (balanced tree)

Wireload mode: segmented
Area mode:

timing library

Instance

JOAA_module
div 49 35
csa_tree_calc_num_sub_12 64 groupi
reg_file csa tree add_87_154 groupi
reg file csa tree add 86 95 groupi
calc_num_mul_13_ 33
square_calc_num mul_12 31
reg file square mul 68 17

Figure 6 RTL area report

divide unsigned

csa_tree_calc_num_sub_12 64 group 2

csa_tree_add 87 _154_group 2
csa tree add 86 95 group 2
mult_unsigned 193
square_unsigned 2652 2654
square unsigned 2652 2654 203

+115 45860 F
+0 45860
+126 45986 R
+0 45986
+106 46092 R
+0 46092
+26 46118 F
+0 46118
+188 46297 R
+0 46297
+126 46423 R
+0 46423
+94 46517 R
+0 46517
+110 46627 F
+0 46627
+108 46735 R
+0 46735
+99 46835 F
+0 46835
+108 46942 R
+0 46942
+99 47042 F
+0 47042
+187 47149 R
+0 47149
+99 47248 F
+0 47248
+107 47355 R
+0 47355
+198 47552 R
+0 47552
+45 47597 R
+0 47597
+118 47715 R
1000000 R
Cell Count Cell Area
6519 20789.280
2551 5763.960
1365 3919.320
684 2729.880
348 1428.840
266 758.160
250 670.320
269 669.960

Net Area

oo @

Total Area

Wirelead

ZeroWireload
ZeroWireload
ZeroWireload
ZeroWireload
ZeroWireload
ZeroWireload
ZeroWireload
ZeroWireload

Instance: /NOAA module
Power Unit: W
PDB Frames: /stim#0/frame#0

Category Leakage Internal Switching Total Rowss
memory 0.00000e+00 ©0.00000e+00 0.00000e+00 O.00000e+00 0.00%
register 3.06004e-05 4.16089%e-06 1.73359e-07 3.49346e-05 18.48%
latch 0.00000e+00 ©0.00000e+00 ©0.00000e+00 0.00000e+00 0.00%
logic 1.38162e-04 B8.67777e-06 6.57516e-06 1.53415e-04 B81.15%
bbox 0.00000e+00 ©0.00000e+00 0.00000e+D0 0.00000e+00 0.00%
clock 2.46059e-07 4.58224e-08 3.98796e-07 6.90677e-07 0.37%
pad 0.00000e+00 ©0.00000e+00 0.00000e+00 0.00000e+00 0.00%

pm 0.00000e+00 ©0.00000e+00 0.00000e+00 O.00000e+00 0.00%
Subtotal 1.69008e-04 1.28845e-05 7.14732e-06 1.89040e-04 100.00%
Percentage 89.40% 6.82% 3.78% 100.00% 100.00%

Figure 7 RTL power report

Clock Period (ns) Slack (ns) Area (um”2) Average Power (mW)

1000 952.285 20790 0.189

Minimum Clock Period Synthesis at 55ns

st Group : (path_group
iming slack : 64ps
Start-point : denominator_store_reg
End-point : numerator_store reg[32]1/D

(p) : Instance is preserved but may be resized

legacy genus:/> |J

64ps is negligible slack with a clock period of tens of nanoseconds.
Minimum clock period: 55 ns

Maximum clock frequency: 18.18MHz

Can take 18 million samples a second.

Must wait two clock cycles after initialization for output.

Innovus Reports
After performing the RTL synthesis, we have done encounter layout/Innovus layout and the resultant
power, area & timing reports are shown below.

Jl x“nm =

‘H\ : \\IL ‘} | =

Figure 8 Encounter synthesized layout

Hinst Name Module Name Inst Count Total Area
NOAA module 6548 20883.240
RC_CG_HIER_INST® RC_CG_MOD 1 6.480
RC_CG_HIER_INST1 RC_CG_MOD_1 1 6.480
RC_CG_HIER_INST2 RC_CG_MOD_2 1 6.480
RC_CG_HIER_INST3 RC_CG_MOD_3 1 6.480
RC_CG_HIER_INST4 RC_CG_MOD_4 1 6.480
calc_num_mul_13 33 mult_unsigned_193 266 758.160
csa_tree calc num sub 12 64 groupli csa tree calc num sub 12 64 group 2 1367 3924.360
div_49 35 divide unsigned 2568 5815.440
reg file RC CG HIER INSTS RC CG MOD 5 1 6.480
reg file csa tree add 86 95 groupli csa tree add 86 95 group 2 348 1428.840
reg file csa tree add 87 154 groupi csa tree add 87 154 group 2 684 2729.880
reg_file_ square mul_68_17 square_unsigned_2652_ 2654 203 269 669.960
square_calc_num_mul_12 31 square_unsigned 2652 2654 250 670.320

innovus 4>

Figure 9 Encounter area report

Total Internal Power: 0.01325094 6.8099%

Total Switching Power: 0.01009579 5.1884%

Total Leakage Power: 0.17123678 88.0017%

Total Power: ©.19458351

Group Internal Switching Leakage Total Percentage
Power Power Power Power (%)

Sequential 0.004052 0.0003459 0.02919 0.03359 17.26

Macro] [¢] [¢]] 0]

I0] [¢] [¢] [¢] 6]

Combinational 0.009153 0.00975 0.1418 0.1607 82.59

Clock (Combinational) 2] [¢] [¢] 2] [¢]

Clock (Sequential) 4.57e-085 [¢] 0.0002436 0.0002893 0.1487

Total 0.01325 0.0101 0.1712 9.1946 100

Rail Voltage Internal Switching Leakage Total Percentage
Power Power Power Power (%)

VoD 0.9 0.01325 0.0101 0.1712 9.1946 100

Clock Internal Switching Leakage Total Percentage
Power Power Power Power (%)

CLK 4.57e-85 [¢] 0.0002436 0.0002893 0.1487

Total 4.57e-05 [¢] 0.0002436 0.0002893 0.1487

Clock: CLK

Clock Period: 1.800000 usec

Clock Toggle Rate: 2.0000 Mhz

Clock Static Probability: ©.5000

* Power Distribution Summary:

* Highest Average Power: csa tree calc num sub 12 64 groupi/gl3721 (CMPE42D1): 0.0002812
* Highest Leakage Power: reg file csa tree add 86 95 groupi/g4533 (CMPE42D1): 0.000241
* Total Cap: 3.32571e-11 F

* Total instances in design: 6548

* Total instances in design with no power: o]

* Total instances in design with no activty: 6]

* Total Fillers and Decap: [¢]

Figure 10 Encounter power report

Generated by:

Cadence Innovus 19.10-pge2 1

¢

¥ 0S: Linux x86 64(Host ID vlinux-35.ece.liastate.edu)
¥ Generated on: Tue Nov 17 19:00:52 2020

Design: NOAA module

£ Command: report timing

S S S S S S S S s

’ath 1: MET Setup Check with Pin numerator store reg[31]/CP

cndpoint: numerator store reg[31]/D (™) checked with 1leading edge of 'CLK'
jeginpoint: denominator store reg[19]/0 (v) triggered by leading edge of 'CLK'
ath Groups: {CLK}

inalysis View: typical view

Jther End Arrival Time 0.000
setup 0.121
+ Phase shift 1l000.000
= Required Time 999.879
Arrival Time 55.470
= Slack Time 944 .409
Clock Rise Edge 0.000
+ Clock Network Latency (Ideal) 0.000
= Beginpoint Arrival Time 0.000

Figure 11 Encounter Timing report

Clock Period (ns) Slack (ns) Area (um”2) Average Power (mW)
1000 944.409 20884 0.289

Test Results

We tested our register file by giving it a series of temperature inputs and ensuring that the module
calculated the correct Tsum and Tsum_squared values. We added a terminal input to show the expected
and the actual Tsum and Tsum_squared values.

¥ Wave - Default

Figure 12: Modelsim Waveforms for register_file_tb.v

Running tests for register_file module

Tsum_actual= x | Tsum_expected= x | Tsum_square_actual= X | Tsum_square_expected= X

Tsum_actual= 1 | Tsum_expected= 1 | Tsum_square_actual= 1 | Tsum_square_expected= 1

Tsum_actual= 3 | Tsum_expected= 3 | Tsum_square_actual= 5 | Tsum_square_expected= 5
#Tsum_actual= 6 | Tsum_expected= 6 | Tsum_square_actual= 14 | Tsum_square_expected= 14

Tsum_actual= 10 | Tsum_expected= 10 | Tsum_square_actual= 30 | Tsum_square_expected= 30
Tsum_actual= 15 | Tsum_expected= 15 | Tsum_square_actual= 55 | Tsum_square_expected= 55
Tsum_actual= 21 | Tsum_expected= 21 | Tsum_square_actual= 91 | Tsum_square_expected= 91
Tsum_actual= 28 | Tsum_expected= 28 | Tsum_square_actual= 140 | Tsum_square_expected= 140
Tsum_actual= 36 | Tsum_expected= 36 | Tsum_square_actual= 204 | Tsum_square_expected= 204
Tsum_actual= 45 | Tsum_expected= 45 | Tsum_square_actual= 285 | Tsum_square_expected= 285
Tsum_actual= 55 | Tsum_expected= 55 | Tsum_square_actual= 385 | Tsum_square_expected= 385
Tsum_actual= 66 | Tsum_expected= 66 | Tsum_square_actual= 506 | Tsum_square_expected= 506
Tsum_actual= 78 | Tsum_expected= 78 | Tsum_square_actual= 650 | Tsum_square_expected= 650
Tsum_actual= 91 | Tsum_expected= 91 | Tsum_square_actual= 819 | Tsum_square_expected= 819

Tsum_actual= 105 | Tsum_expected= 105 | Tsum_square_actual= 1015 | Tsum_square_expected= 1015
Tsum_actual= 119 | Tsum_expected= 119 | Tsum_square_actual= 1239 | Tsum_square_expected= 1239
Tsum_actual= 133 | Tsum_expected= 133 | Tsum_square_actual= 1491 | Tsum_square_expected= 1491
All tests for register_file module passed

Since the given testbench did not operate correctly, we made our own testbench using the same data as
the test cases given to us, just inserted directly into the Verilog testbench file (source code shown at the
end of the report).

8] Wave -Default + 2| x|

3 3
2 D N I I T N
(50

[B M,lbllnrinuwmnﬁml,mﬂgd

Cursor 1 32375ps

T I & O] |

Figure 13: Modelsim Waveforms from 100 sample test case (NOAA_TEST_DATA_ 100 n.xIsx)

Here we can see from the waveform that the module generates the expected output (highlighted in
yellow) 2 clock cycles after the input (highlighted in blue) was originally given.

We also added an output to the terminal, showing the expected value and the actual value for AVG_SD:

AVG_SD (actual) = 1383 | AVG_SD (expected) = 1383
AVG_SD (actual) = 905 | AVG_SD (expected) = 905
AVG_SD (actual) = 1098 | AVG_SD (expected) = 1098
AVG_SD (actual) = 1435 | AVG_SD (expected) = 1435
AVG_SD (actual) = 956 | AVG_SD (expected) = 956
AVG_SD (actual) = 929 | AVG_SD (expected) = 929
AVG_SD (actual) = 895 | AVG_SD (expected) = 895
AVG_SD (actual) = 1700 | AVG_SD (expected) = 1700
AVG_SD (actual) = 1838 | AVG_SD (expected) = 1838
AVG_SD (actual) = 1932 | AVG_SD (expected) = 1932
AVG_SD (actual) = 1793 | AVG_SD (expected) = 1793
AVG_SD (actual) = 906 | AVG_SD (expected) = 906
AVG_SD (actual) = 1790 | AVG_SD (expected) = 1790
AVG_SD (actual) = 884 | AVG_SD (expected) = 884
AVG_SD (actual) = 908 | AVG_SD (expected) = 908
AVG_SD (actual) = 1770 | AVG_SD (expected) = 1770
AVG_SD (actual) = 1872 | AVG_SD (expected) = 1872
AVG_SD (actual) = 912 | AVG_SD (expected) = 912
AVG_SD (actual) = 1959 | AVG_SD (expected) = 1959
AVG_SD (actual) = 1948 | AVG_SD (expected) = 1948
AVG_SD (actual) = 942 | AVG_SD (expected) = 942
AVG_SD (actual) = 969 | AVG_SD (expected) = 969
AVG_SD (actual) = 962 | AVG_SD (expected) = 962
AVG_SD (actual) = 1825 | AVG_SD (expected) = 1825
AVG_SD (actual) = 2018 | AVG_SD (expected) = 2018
AVG_SD (actual) = 2007 | AVG_SD (expected) = 2007
AVG_SD (actual) = 2000 | AVG_SD (expected) = 2000
AVG_SD (actual) = 937 | AVG_SD (expected) = 937
AVG_SD (actual) = 1964 | AVG_SD (expected) = 1964
AVG_SD (actual) = 815 | AVG_SD (expected) = 815
AVG_SD (actual) = 852 | AVG_SD (expected) = 852
AVG_SD (actual) = 702 | AVG_SD (expected) = 702
AVG_SD (actual) = 706 | AVG_SD (expected) = 706
AVG_SD (actual) = 832 | AVG_SD (expected) = 832
AVG_SD (actual) = 822 | AVG_SD (expected) = 822

AVG_SD (actual) = 922 | AVG_SD (expected) = 922
AVG_SD (actual) = 889 | AVG_SD (expected) = 889
AVG_SD (actual) = 913 | AVG_SD (expected) = 913
AVG_SD (actual) = 1697 | AVG_SD (expected) = 1697
AVG_SD (actual) = 1699 | AVG_SD (expected) = 1699
AVG_SD (actual) = 1799 | AVG_SD (expected) = 1799
AVG_SD (actual) = 1607 | AVG_SD (expected) = 1607
AVG_SD (actual) = 1559 | AVG_SD (expected) = 1559
AVG_SD (actual) = 1052 | AVG_SD (expected) = 1052
AVG_SD (actual) = 988 | AVG_SD (expected) = 988
AVG_SD (actual) = 1709 | AVG_SD (expected) = 1709
AVG_SD (actual) = 1691 | AVG_SD (expected) = 1691
AVG_SD (actual) = 1812 | AVG_SD (expected) = 1812
AVG_SD (actual) = 1734 | AVG_SD (expected) = 1734
AVG_SD (actual) = 965 | AVG_SD (expected) = 965
AVG_SD (actual) = 1876 | AVG_SD (expected) = 1876
AVG_SD (actual) = 1806 | AVG_SD (expected) = 1806
AVG_SD (actual) = 944 | AVG_SD (expected) = 944
AVG_SD (actual) = 2098 | AVG_SD (expected) = 2098
AVG_SD (actual) = 1914 | AVG_SD (expected) = 1914
AVG_SD (actual) = 1898 | AVG_SD (expected) = 1898
AVG_SD (actual) = 1835 | AVG_SD (expected) = 1835
AVG_SD (actual) = 1052 | AVG_SD (expected) = 1052
AVG_SD (actual) = 1091 | AVG_SD (expected) = 1091
AVG_SD (actual) = 1003 | AVG_SD (expected) = 1003
AVG_SD (actual) = 1054 | AVG_SD (expected) = 1054
AVG_SD (actual) = 1104 | AVG_SD (expected) = 1104
AVG_SD (actual) = 1112 | AVG_SD (expected) = 1112
AVG_SD (actual) = 1112 | AVG_SD (expected) = 1112
AVG_SD (actual) = 1038 | AVG_SD (expected) = 1038
AVG_SD (actual) = 1440 | AVG_SD (expected) = 1440
AVG_SD (actual) = 961 | AVG_SD (expected) = 961
AVG_SD (actual) = 901 | AVG_SD (expected) = 901
AVG_SD (actual) = 943 | AVG_SD (expected) = 943
AVG_SD (actual) = 1502 | AVG_SD (expected) = 1502
AVG_SD (actual) = 1005 | AVG_SD (expected) = 1005
AVG_SD (actual) = 1030 | AVG_SD (expected) = 1030
AVG_SD (actual) = 1028 | AVG_SD (expected) = 1028
AVG_SD (actual) = 1755 | AVG_SD (expected) = 1755
AVG_SD (actual) = 961 | AVG_SD (expected) = 961
AVG_SD (actual) = 957 | AVG_SD (expected) = 957
AVG_SD (actual) = 960 | AVG_SD (expected) = 960
AVG_SD (actual) = 1016 | AVG_SD (expected) = 1016
AVG_SD (actual) = 1002 | AVG_SD (expected) = 1002
AVG_SD (actual) = 1055 | AVG_SD (expected) = 1055
AVG_SD (actual) = 1439 | AVG_SD (expected) = 1439
AVG_SD (actual) = 1552 | AVG_SD (expected) = 1552
AVG_SD (actual) = 1448 | AVG_SD (expected) = 1448
AVG_SD (actual) = 1260 | AVG_SD (expected) = 1260
AVG_SD (actual) = 1368 | AVG_SD (expected) = 1368
AVG_SD (actual) = 1281 | AVG_SD (expected) = 1281
AVG_SD (actual) = 1244 | AVG_SD (expected) = 1244
AVG_SD (actual) = 775 | AVG_SD (expected) = 775
AVG_SD (actual) = 764 | AVG_SD (expected) = 764
AVG_SD (actual) = 1467 | AVG_SD (expected) = 1467
AVG_SD (actual) = 856 | AVG_SD (expected) = 856
AVG_SD (actual) = 1685 | AVG_SD (expected) = 1685
AVG_SD (actual) = 880 | AVG_SD (expected) = 880
AVG_SD (actual) = 816 | AVG_SD (expected) = 816
AVG_SD (actual) = 940 | AVG_SD (expected) = 940
AVG_SD (actual) = 950 | AVG_SD (expected) = 950

AVG_SD (actual) = 951 | AVG_SD (expected) = 951

AVG_SD (actual) = 1852 | AVG_SD (expected) = 1852

AVG_SD (actual) = 918 | AVG_SD (expected) = 918

AVG_SD (actual) = 909 | AVG_SD (expected) = 909

All tests passed.

** Note: Sstop : /home/astee/ee465/FinalProject/NOAA_tb.v(51)
Time: 2130 ns Iteration: 1 Instance: /NOAA_tb50;

Conclusion

Difficulties and learning experiences

Overall, this project was a successful exercise in understanding a problem, come up with a solution, and
implement that solution in software through teamwork. The Babylonian method of calculating the
standard deviation was a new formula that we learned through this project. We learned that by
combining the multiple expressions for standard deviation, we could come up with a much more
workable formula that fit our use case very well.

As far as difficulties, we learned in this project that it most certainly would have made the software
development process smoother if we drew the schematic first, and then implemented the schematic in
Verilog. In our approach, we wrote the software first, and then drew a schematic based on our Verilog
code. Drawing the schematic first would have been a much more systematic approach, where we could
have ironed out details ahead of time and made debugging the Verilog code much easier.

Feedback on project experience

Overall, this project was a good exercise in using HDL to solve a practical problem. The project left a lot
of room for teammates to coordinate their efforts and come up with a unique design to solve the given
problem.

As far as how the project could improve, | think it would be helpful to have a more gradual ramp up to
the difficulty that this project presents in preceding labs. | felt like this project was a much more
complex task than anything we had done in labs previously. Although they may not have had anything to
do with the project directly, | think it would help bring more success if we had implemented more
sophisticated HDL designs in labs before this.

Source Code

register_file.v
“timescale 1ns/1ps

module register file(RESET, TN, SAMPLE, CLK, Tsum, Tsum_square);
input RESET;

input [11:0] TN;

input SAMPLE;

input CLK;

output [15:0] Tsum;
output [27:0] Tsum_square;

reg[11:0] TN1, TN2, TN3, TN4, TN5, TN6, TN7;
reg[11:0] TN8, TN9, TN1@, TN11, TN12, TN13, TN14;

reg[23:0] TN1_sqr, TN2 sqr, TN3 sqr, TN4 sqr, TN5_ sqgr, TN6_sqr, TN7_sqr;
reg[23:0] TN8_sqr, TN9_sqr, TN1@_sqr, TN1l _sqr, TN12_sqr, TN13_sqr, TN14_sqr;

always @ (posedge CLK)
begin

if(RESET == 1'bl) begin

TN1 <= 1'b0;

TN2 <= 1'b0;

TN3 <= 1'b0;

TN4 1'bo;

TN5 1'bo;

TN6 <= 1'b0;

TN7 1'bo;

TN8 <= 1'b0;

TN9 1'b0;

) 1'bo;

TN11 1'bo;

TN12 1'b0;

TN13 <= 1'b@;

TN14 1'b0;

TN1 sqgr 1'bo;
TN2_sqgr 1'bo;
TN3_sqgr 1'bo;
TN4_sqgr 1'bo;
TN5_sqgr 1'bo;
TN6_sqgr 1'bo;
TN7 sqgr 1'bo;

TN8 sqgr <= 1'b@;

TN9_sqgr <= 1'b@;

TN1O@_sqr <= 1'b@o;

TN11 _sqgr <= 1'b@;

TN12_sqr <= 1'b@;

TN13_sqgr <= 1'b@;

TN14_sqgr <= 1'b@O;

end

else begin

if(SAMPLE) begin

TN1 <= TN;
TN2 <= TN1;
TN3 <= TN2;
TN4 <= TN3;
TN5 <= TN4;
TN6 <= TN5;
TN7 <= TN6;
TN8 <= TN7;
TN9 <= TN8;
TN1O@ <= TN9;
TN11 <= TN1e;
TN12 <= TN11;
TN13 <= TN12;
TN14 <= TN13;

TN1 sgr TN**2
TN2_sqgr TN1_sqr;
TN3_sqr TN2_sqr;
TN4_sqr TN3_sqr;
TN5_sqr TN4_sqr;
TN6_sqr <= TN5_sqr;
TN7_sqr TN6_sqr;
TN8 sqgr TN7_sqr;
TN9_sqr <= TN8_sqr;
TN10_sgr <= TN9_sqr;
TN11 sgr <= TN1@_sqr;
TN12_sqgr <= TN11l_sqr;
TN13 sgr <= TN12 sqgr;
TN14 sgr <= TN13 sqgr;
end
end
end

assign Tsum = TN1 + TN2 + TN3 + TN4 + TN5 + TN6 + TN7 + TN8 + TNS + TN1© + TN11l +
TN12 + TN13 + TN14;

assign Tsum _square = TN1 sqr + TN2 sgr + TN3 sqr + TN4 _sgr + TN5 sqgr + TN6_sqr +
TN7_sqr + TN8_sqr + TN9_sqgr + TN1@_sqgr + TN11l sqgqr + TN12_sqgqr + TN13_sqr + TN14_sq
rs

endmodule

register_file_tb.v
“include "register_file.v"

“timescale 1ns/1ns
module register file tb;

reg reset;

reg [11:0] tn;

reg sample;

reg clk;

wire [15:0] tsum_actual;

reg [15:0] tsum_expected;

wire [27:0] tsum_square_actual;
reg [27:0] tsum _square_ expected;

always #10 clk <= ~clk;

integer 1i;

initial begin

$display("Running tests for register file module");

$display("Tsum_actual=%d | Tsum expected=%d | Tsum_square actual=%d | Tsum_sq
uare_expected=%d",

tsum _actual,

tsum_expected,

tsum_square_actual,

tsum_square_ expected

)s

clk = 0;
:1'

for (i ; i ; i i+ 1) begin
tn

case (i)

1: begin
tsum_expected = 1;
tsum_square_expected =

end

2: begin
tsum_expected = 1+2;
tsum_square_expected =

end

3: begin
tsum_expected = 1+2+3;
tsum_square_expected =

end

4: begin
tsum_expected = 1+2+3+4;
tsum_square_expected = 1**2

end

5: begin
tsum_expected = 1+2+3+4+5;
tsum_square expected = 1**2

end

6: begin
tsum_expected = 1+2+3+4+5+6;
tsum_square_expected = 1**2 +

end

7: begin
tsum_expected = 1+2+3+4+5+6+7;
tsum _square expected = 1**2 + 2**2

end
8: begin
tsum_expected = 1+2+3+4+5+6+7+8;
tsum _square expected = 1**2 + 2**2
7*¥*2 + 8*%*2;
end
9: begin
tsum_expected = 1+2+3+4+5+6+7+8+9;
tsum square expected = 1**2 + 2**2
7%%2 + 8%*2 1 9*#*2;
end

10: begin
tsum expected = 1+2+3+4+5+6+7+8+9+10;

tsum_square_expected = 1**2 + 2%*2 4 3**2 1 A4**2
+ 9%*¥2 4 10%*2;
end
11: begin
tsum_expected = 1+2+43+4+5+6+7+8+9+10+11;
tsum_square_expected = 1**2 + 2%*2 4 3**2 1 4**2
+ 9*%*2 4+ 10**2 + 11**2;
end
12: begin
tsum_expected = 1+2+3+4+5+6+7+8+9+10+11+12;
tsum_square_expected = 1**2 + 2**2 4+ 3**2 4 4*%*)
+ 9**2 4+ 10%*2 + 11**2 + 12**2;
end
13: begin
tsum_expected = 1+2+3+4+5+6+7+8+9+10+11+12+13;
tsum_square_expected = 1**2 + 2**2 4+ 3**2 4 4*%*)
+ 9**2 4+ 10*%*2 + 11**2 + 12**2 + 13*%*2;
end
14: begin
tsum_expected = 1+2+3+4+5+6+7+8+9+10+11+12+13+14;
tsum_square_expected = 1**2 + 2**2 + 3**2 4 4*%2 4+
+ 9**2 4+ 10%*2 + 11**2 + 12**2 4+ 13**2 + 14**2;
end
15: begin
tsum _expected = 2+43+4+5+6+7+8+9+10+11+12+13+14+15;
tsum_square_expected = 2*¥*2 + 3**2 + 4**2 4 G5*¥*) 4
+ 10**2 + 11**2 + 12**2 + 13**) 4 14**2 4 15%*2;
end
16: begin
tsum_expected = 3+4+5+6+7+8+9+10+11+12+13+14+15+16;
tsum_square_expected = 3**2 4+ 4%*2 4 G**) 4 g**2 4 7**2
10**2 + 11*%*2 + 12**2 + 13**2 + 14**) + 15*%*) + 16**2;
end
endcase
#5

$display("Tsum_actual=%d | Tsum expected=%d | Tsum_square_ actual=%d | Tsu
m_square_expected=%d",

tsum _actual,

tsum_expected,

tsum_square actual,

tsum_square_expected

)5

if (tsum_expected != tsum_actual || tsum_square_expected != tsum_square
actual) begin
$error("Wrong output for iteration: %d", i);
$stop;
end
#5;
end

$display("All tests for register file module passed");

.RESET(reset),

.TN(tn),

.SAMPLE (sample),

.CLK(c1k),

.Tsum(tsum_actual),
.Tsum_square(tsum_square_actual)

)5

endmodule

calculate_numerator_denominator.v
“timescale 1ns/1ns

module calculate numerator_denominator(
input [11:0] sigma_hat,
input [3:0] N,
input [15:0] Tsum,
input [27:0] Tsum_square,
output [32:0] numerator,
output [21:0] denominator

)5

assign numerator = ((sigma_hat**2) * (N**2)) + (N*Tsum_square) - (Tsum**2);
assign denominator = 2 * (N**2) * sigma hat;

endmodule

calculate_numerator_denominator_tb.v

NOAA _module.v

“include "register_file.v"
“include "calculate_numerator_denominator.v"

“timescale 1ns/1ns

module NOAA module(
input RESET,
input MODE,
input [11:0] TN,
input CLK,
output reg SAMPLE,
output reg DONE,

output reg [11:0] AVG_SD
)

reg [3:0] N;
wire [3:0] N_for_calc;
reg [3:0] N_hold;

wire [15:0] Tsum;
reg [15:0] Tsum_hold;
wire [15:0] Tsum_calc;

wire [27:0] Tsum_square;
reg [27:0] Tsum_square_hold;
wire [27:0] Tsum _square_calc;

reg model;
reg mode2;
reg [1:0] calc_state;

reg [11:0] sigma_hat;
wire [11:0] sigma_hat_for_calc;

wire [32:0] numerator;

reg [32:0] numerator store;
wire [21:0] denominator;

reg [21:0] denominator_store;

wire [1:0] quotient;

wire [11:0] quotient_rounded;

assign
assign
assign

assign
assign

assign

always

begin
if

N_for_calc = model ? N : N_hold;
Tsum _calc = (model) ? Tsum : Tsum_hold;
Tsum_square_calc = (model) ? Tsum_square : Tsum_square_hold;

quotient = numerator_store / denominator store;
quotient rounded[11:0] = quotient[@]?(quotient[12:1]+1):quotient[12:1];

sigma_hat_for_calc = (model & mode2) ? quotient_rounded : sigma_hat;

@ (posedge CLK)

(RESET)

begin

end
els

SAMPLE <= 1'b0;

DONE <= 1'b@;

sigma_hat <= 12'b010000000000;
AVG_SD <= 0;

N <= 0;

calc_state <= 0;

numerator_store <= 0;
denominator_store <= 0;

model <= O;
mode2 <= 0;

e

begin

SAMPLE <= 1'bl;
if (SAMPLE)
begin
if (N < 14) begin
N <= N+ 1;
end

Tsum_hold <= Tsum_calc;
Tsum_square_hold <= Tsum_square_calc;

N_hold <= N_for_calc;

model <= MODE;

calc_state[0] <= 1;
end

if (calc_state[@])
begin
numerator store <= (model) ? (numerator << 1) : (Tsum << 1);

denominator_store <= (model) ? (denominator) : (N);

calc_state[1l] <= 1;
mode2 <= model;
end

if (calc_state[1])
begin
if (mode2 == 1'bl)

sigma_hat <= quotient_rounded;

AVG_SD <= quotient_rounded;
DONE <= 1;

end

else
DONE <= 0;

.RESET(RESET),

LTNC TN),

.SAMPLE(SAMPLE),

.CLK(CLK),

.Tsum(Tsum),
.Tsum_square(Tsum_square)

.N(N_for_calc),

.sigma_hat(sigma_hat_for_calc
.Tsum(Tsum_calc),
.Tsum_square(Tsum_square_calc
.numerator(numerator),
.denominator(denominator)

register_file_tb.v
“include "register_file.v"

“timescale 1ns/1ns
module register file tb;

reg reset;

reg [11:0] tn;

reg sample;

reg clk;

wire [15:0] tsum_actual;

reg [15:0] tsum_expected;

wire [27:0] tsum square actual;
reg [27:0] tsum _square_expected;

always #10 clk <= ~clk;
integer 1i;

initial begin

$display("Running tests for register file module");

$display("Tsum_actual=%d | Tsum expected=%d | Tsum_square actual=%d | Tsum_sq
uare_expected=%d",

tsum _actual,

tsum_expected,

tsum_square_actual,

tsum_square_ expected

)s

clk = 0;
reset = 1;
sample = ©;
#40

reset = 0;
sample = 1;

for (1 =1; i<=16; i =1i + 1) begin
tn = i

#10
case (i)
1: begin

tsum_expected = 1;
tsum_square_expected =
end
2: begin
tsum_expected = 1+2;
tsum_square_expected =
end
3: begin
tsum_expected = 1+2+3;
tsum_square_expected =
end
4: begin
tsum_expected = 1+2+3+4;
tsum_square_expected = 1**2
end
5: begin
tsum_expected = 1+2+3+4+5;
tsum_square_expected = 1**2
end
6: begin
tsum_expected = 1+2+3+4+5+6;
tsum_square_expected = 1**2 +
end

7: begin
tsum_expected = 1+2+3+4+5+6+7;
tsum_square_expected = 1**2 + 2**2

end
8: begin
tsum _expected = 1+2+3+4+5+6+7+8;
tsum _square expected = 1**2 + 2**2
7*¥%¥2 + 8**2,
end
9: begin
tsum_expected = 1+2+3+4+5+6+7+8+9;
tsum _square expected = 1**2 + 2**2
7*¥%¥2 4+ 8*%*¥) 4 Q9**3.
end
10: begin
tsum_expected = 1+2+3+4+5+6+7+8+9+10;
tsum_square_expected = 1**2 4+ 2*%*2 4 3**)2
7¥*¥2 + 8*¥*2 4 9*¥*) 4 10**2;
end
11: begin
tsum expected = 1+2+3+4+5+6+7+8+9+10+11;

tsum_square_expected = 1**2 + 2%*2 4 3%*2 4**2 4
+ O%*2 4+ 10%*2 + 11%%*2;
end
12: begin
tsum_expected = 1+2+43+4+5+6+7+8+9+10+11+12;
tsum_square_expected = 1**2 + 2%*2 4 3%*2 4**2 4
+ 9**2 4+ 10%*2 + 11**2 + 12**2;
end
13: begin
tsum_expected = 1+2+43+4+5+6+7+8+9+10+11+12+13;
tsum_square_expected = 1**2 + 2**2 4+ 3**2 4*%2 4
+ 9**2 4+ 10*%*2 + 11**2 + 12**2 + 13*%*2;
end
14: begin
tsum_expected = 1+4+2+3+4+5+6+7+8+9+10+11+12+13+14;
tsum_square_expected = 1**2 + 2**2 + 3**2 4*%2 4
+ 9**2 4+ 10%*2 + 11**2 + 12**2 + 13**2 + 14%**2;
end
15: begin
tsum _expected = 2+43+4+45+6+7+8+9+10+11+12+13+14+15;
tsum_square_expected = 2*¥*2 + 3**2 + 4**2 4 G5*¥*) 4
+ 10**2 + 11**2 + 12**2 + 13**2 4 14**2 4 15**2;
end
16: begin
tsum_expected = 3+4+5+6+7+8+9+10+11+12+13+14+15+16;
tsum_square_expected = 3**2 + 4**2 4 5*¥*¥) 4 ©¥*) 4 7**)
10**2 + 11*%*2 + 12%%2 4 13*%*2 4+ 14%*2 4 15**) 4 16**2;
end
endcase
#5

$display("Tsum_actual=%d | Tsum expected=%d | Tsum_square_ actual=%d | Tsu
m_square_expected=%d",

tsum_actual,

tsum_expected,

tsum_square_actual,

tsum_square_expected

)5

if (tsum_expected != tsum_actual || tsum_square expected != tsum_square_
actual) begin
$error("Wrong output for iteration: %d", i);
$stop;
end
#5;

end

$display("All tests for register file module passed");

end

.RESET(reset),

.TN(tn),

.SAMPLE (sample),

.CLK(clk),

.Tsum(tsum_actual),
.Tsum_square(tsum_square_actual)

)s

endmodule

NOAA_module_tb.v
“timescale 1ns/1ns

module NOAA tb();

reg CLK, RESET, MODE;
reg [11:0] TN;

wire SAMPLE, DONE;
wire [11:0] AVG_SD;

reg [11:0] result_expected;

reg [11:0] result expected 0;
reg [11:0] result expected 1;
reg [11:0] result expected 2;

initial begin
CLK = 0;
RESET = 1;
result expected =
result expected ©
result expected 1
result expected 2
end

initial begin
#50
==

end

always #10
begin

CLK = ~CLK;
end

always @ (posedge CLK)

begin
result_expected result_expected 0;
result expected @ = result expected 1;
result expected 1 result expected 2;

if (DONE)
begin
$display("AVG_SD (actual) = %d | AVG_SD (expected) = %d", AVG_SD, result e
xpected);
if (AVG_SD != result expected)
begin
$error("Wrong output generated!");
$stop;
end
end
end

initial begin
#65
TN = 1383; MODE 0; result expected 2
#20

3177; MODE 1; result expected 2

593; MODE 1; result expected 2

586; MODE 0; result expected 2

1449; MODE ; result expected

2362; MODE ; result expected 2

2290; MODE ; result expected 2

1763; MODE ; result expected 2

2940, MODE ; result expected 2

2772; MODE 0;

411; MODE =
1767; MODE 1;

1782; MODE 0;

2862; MODE 1;

2867; MODE 1;
329; MODE =
2022; MODE 0;
269; MODE =
2993; MODE 0;
2211; MODE 0;

1829; MODE 1;

2821; MODE 1;
984; MODE =
2398; MODE

3115; MODE
1613; MODE
1691; MODE
3156; MODE
2062; MODE
1396; MODE

3105; MODE

result_expected 2

0; result expected 2 =

result expected 2

result_expected 2

result_expected_ 2

result expected 2

0; result expected 2 =

result expected 2

1; result expected 2 =

result expected 2

result expected 2

result expected 2

result expected 2

1; result expected 2 =

result expected 2

result expected 2

result expected 2

result expected 2

result expected 2

result expected 2

result_expected_2

result expected 2

= 1932;

1793;

906 ;

1790;

884;

908;

1770;

= 1872;

912;

1959;

1948;

942;

969;

962;

1825;

2018;

2007;

2000;

937;

1964;

815;

852;

1884; MODE 1;

1136; MODE 1;

result expected 2

result_expected 2

446; MODE = 1; result_expected 2 =

2113; MODE 1;

result expected 2

124; MODE = 1; result_expected 2 =

1982; MODE 1;

2814; MODE 1;

result expected 2

result expected 2

234; MODE = 0; result expected 2 =

1643; MODE 0;

3087; MODE 0;

result expected 2

result expected 2

476; MODE = 0; result expected 2 =

1388; MODE 0;

3003; MODE 1;

2354 ; MODE 1;

3132; MODE 0;

result expected 2

result expected 2

result expected 2

result expected 2

876; MODE = ©; result expected 2 =

2139; MODE 0;

1026; MODE 0;

result expected 2

result expected 2

894; MODE = 1; result expected 2 =

3195; MODE 0;

1834; MODE 0;

3067; MODE 1;

2897; MODE 0;

result expected 2

result expected 2

result_expected_2

result_expected 2

517; MODE ; result_expected 2 = 1914;

252; MODE ; result expected 2 = 1898;

501; MODE ; result expected 2 = 1835;

1086; MODE 1; result_expected 2 = 1052;

265; MODE = 1; result _expected 2 = 1091;

1244 ; MODE 1; result expected 2 = 1003;

40; MODE = 1; result expected 2 = 1054;

2831; MODE 1; result _expected 2 1104;

2097; MODE 1; result _expected 2 1112;

881; MODE = 1; result expected 2 = 1112;

2309; MODE 1; result expected 2 1038;

2167; MODE 0; result expected 2 1440;

1897; MODE 1; result expected 2 961;

186; MODE = 1; result expected 2 = 901;

2506; MODE 1; result expected 2 943;

3019; MODE 0; result expected 2 1502;

328; MODE = 1; result expected 2 = 1005;

2532; MODE 1; result expected 2 1030;

3103; MODE 1; result expected 2 1028;

670; MODE = ©0; result expected 2 = 1755;

1308; MODE 1; result_expected 2 = 961;

740; MODE = 1; result expected 2 = 957;

2196;

MODE

218; MODE

1246;

MODE

121; MODE

1979;

1764;

1041;

MODE

MODE

MODE

393; MODE

1834;

1324;

2587;

MODE

MODE

MODE

943; MODE

2227;

AL

2632;

2837;

2875;

MODE

MODE

MODE

MODE

MODE

674; MODE

58; MODE =

2429;

1035;

1818;

2943,

MODE

MODE

MODE

MODE

1; result expected_

1; result_expected 2

1; result_expected_

1; result expected 2

0; result _expected

0; result expected_

0; result expected_

0; result expected 2

0; result expected

0; result expected_

0; result expected

1; result expected 2

1; result expected

0; result expected

1; result expected

0; result expected

1; result expected

1; result expected 2

1; result expected 2

1; result expected

1; result expected

0; result expected

1; result expected

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

= 960;

1016;

= 1002;

1055;

1439;

1552;

1448;

1260;

1368;

1281;

1244;

775;

764;

1467;

856;

1685;

880;

816;

940;

950;

951;

1852;

918;

#20

1528; MODE = 1; result_expected 2 = 909;

¢
.CLK(CLK),
.RESET(RESET),
.MODE (MODE),
.TN(TN),
.SAMPLE (SAMPLE),
.DONE (DONE),
.AVG_SD(AVG_SD)
)

endmodule

