

EE 465: Final Project

NOAA Module Report
Professor: Dr. Ahamed Maruf
TA: Shuo Xie

Abraham Steenhoek, Samuel Ferguson, Sriram Nithin Gopal Lanka
11-21-2020

Introduction
In the agricultural space, embedded systems are always in high demand. This is due to their

customizability to fit many different problems, and their modularity to work with other systems. In this

project, we are given the task to calculate the moving average and moving standard deviation of the

current temperature. Our module is provided the current temperature from an external source (i.e. a

sensor from another system) and will transmit the moving average or standard deviation using an

external transmitter. Our task is to build the module that performs the calculations to determine the

moving average and standard deviation.

Design Description
We expressed the moving average the moving standard deviation as follows:

𝑁 = min(𝑛, 14) (where n is the number of samples taken since reset)

𝑇𝑎𝑣𝑔 =
1

𝑁
∑𝑇𝑖

𝑛

𝑖=1

𝜎 = √
1

𝑁
∑(𝑇𝑖 − 𝑇𝑎𝑣𝑔)

2

𝑛

𝑖=1

= √
1

𝑁
(∑(𝑇𝑖

2)

𝑛

𝑖=1

) − 𝑇𝑎𝑣𝑔
2

We used one iteration of the Babylonian method to square root of the variance to find the standard

deviation in the equation above.

√𝑉 ≅
1

2
(�̂� +

𝑉

�̂�
)

Where �̂� is a guess of √𝑉. Using these given equations, we went through the following derivation to

obtain a workable expression of the moving standard deviation:

√𝑉 = 𝜎 𝑇𝑠𝑢𝑚 = ∑ 𝑇𝑖
𝑛
𝑖=1 𝑇𝑠𝑞𝑟𝑑𝑠𝑢𝑚

= ∑ (𝑇𝑖
2)𝑛

𝑖=1

𝜎 ≅
1

2
(�̂� +

𝑉

�̂�
)

𝜎 =
1

2
(�̂� +

1
𝑁 (∑ (𝑇𝑖

2)𝑛
𝑖=1) − 𝑇𝑎𝑣𝑔

2

�̂�
) =

1

2
(
�̂�2 +

1
𝑁 (𝑇𝑠𝑞𝑟𝑑𝑠𝑢𝑚) − (

1
𝑁)

2

(𝑇𝑠𝑢𝑚)
2

�̂�
)

𝜎 =
1

2
((

1

𝑁2
)(
1

�̂�
) ∗ (�̂�2 +

1

𝑁
(𝑇𝑠𝑞𝑟𝑑𝑠𝑢𝑚) − (

1

𝑁
)
2

(𝑇𝑠𝑢𝑚)
2))

𝜎 =
(𝑁2 ∗ �̂�2 + (𝑁 ∗ 𝑇𝑠𝑞𝑟𝑑𝑠𝑢𝑚) −

(𝑇𝑠𝑢𝑚)
2)

2 ∗ 𝑁2 ∗ �̂�

Using this reworked equation, we can calculate the moving standard deviation without having to

calculate the variance if we’ve been given an initial �̂� value. Additionally, this minimizes the number of

divisions for our calculation to 1 division, making it possible to delay the division until the end of the

calculation to avoid propagating roundoff errors.

Schematics
In our design, we had 3 separate modules: a register file, a calculator for the standard deviation

numerator and denominator, and a top-level module to tie the two modules together and perform the

division necessary to get the output.

Figure 1: Schematic of register file

The register file stores 14 sampled temperature in the order that they were sampled in. On the rising

CLK edge, when the SAMPLE signal is high, the module will store the incoming temperature in DFF0, and

transfer the value in DFF0 into DFF1, until DFF13 has been filled. Since we only keep track of 14

temperatures, the value in DFF13 is discarded when a new temperature is measured. This same

procedure is used to store the square of each incoming temperature. The sum of all measured temps,

and squared temps, is calculated and updated every time a new sample is taken as well.

Figure 2: Schematic of Standard Deviation numerator/denominator calculator

The standard deviation numerator and denominator calculator receives the necessary inputs to

calculate the numerator:

𝜎𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = (𝑁2 ∗ �̂�2 + (𝑁 ∗ 𝑇𝑠𝑞𝑟𝑑𝑠𝑢𝑚
) − (𝑇𝑠𝑢𝑚)

2)

And the denominator:

𝜎𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 2 ∗ 𝑁2 ∗ �̂�

We opted for a design that does not calculate on a CLK signal, in order to try and provide simplicity

when integrating into the NOAA module by not having to worry about another clock signal to

coordinate.

Figure 3: Schematic of top-level module

In designing this NOAA module, we decided to break the calculation into two stages. This gave us room

to perform some simple switching optimizations which will be described later.

Because the SAMPLE signal is placed in a register, and the register file also uses registers and works off

of SAMPLE, we know that with our design, it will take at least 2 clock cycles to calculate the first output.

However, any output can be calculated in 1 clock cycle after the first output. This means that the user

can input new temperatures on every clock cycle, and the correct output will be generated 2 clock cycles

later. Since the calc_state[] reg is only used to provide the correct state upon reset, it is not elaborated

in the schematic. After the first 2 clock cycles, the calc_state[] variable will always be 3 (2’b11), so it is

basically ignored after reset.

As a new temperature sample is taken the N value is incremented until it reaches 14.

The 2 clock cycles represent the 2 stages in the design: (1) loading the variables needed to calculate the

output, and (2) calculating the output, and updating the �̂� value if necessary. Because it will take 2 clock

cycles to calculate the first output, the mode must be preserved for 2 clock cycles, hence the use of the

mode1 and mode2 regs.

In the first stage, the numerator and denominator are chosen based on the mode requested, which is

mode1. We can select the appropriate numerator/denominator with a mux using mode1 as the select

signal. If mode1 = 1, then the numerator and denominator will come from the standard deviation

numerator/denominator calculator, otherwise the numerator is the sum of the temperatures (Tsum)

and the denominator is the number of samples taken(N).

In order to make sure the answer was rounded correctly, we left-shifted the numerator value by 1 bit

and checked the LSB of the left-shifted value. We rounded up if the LSB = 1 by adding 1 to the top 12 bits

of the left-shifted value. While this isn’t a perfect solution, for our use case it was the simplest to

implement.

Since we only want to update the �̂� value when we have calculated a new standard deviation, we only

want to replace it when the mode2 = 1, because mode2 is the saved mode from when the initial request

was made. Additionally, we do not want to calculate a new standard deviation unless the user requests

one, so the inputs used to calculate 𝝈: [�̂�, N, Tsum, Tsum_square], should not be updated unless the

mode for that request is 1. This can be done by multiplexing these values with the mode1 signal, and by

multiplexing the �̂� value with AND(mode1, mode2). The reason that �̂� needs a special mux is if case the

user requests multiple standard deviations in a row, the �̂� must be updated only after a standard

deviation has been calculated first, which is when mode2 is set to one, which is a clock cycle behind

mode1. This gives us the added benefit of saving switching power, because the standard deviation is

only being calculated when it is requested, not every clock cycle.

When a new standard deviation has been calculated, we save that value as the �̂� for our next standard

deviation calculation. Since the �̂� value is seen as a “guess” of the standard deviation, it seemed to us

that using the previous 𝝈 was the most accurate guess we could make without creating some other kind

of external formula. This saved us from having to calculate the variance that was given in the report as

well, which could have required extra divisions.

RTL Compiler Reports
RTL synthesis has been performed on the NOAA_module.v file and the resulting schematics with timing,

power and area report are illustrated below.

Figure 4 RTL synthesized circuit schematic

Figure 5 RTL timing report

Figure 6 RTL area report

Figure 7 RTL power report

Clock Period (ns) Slack (ns) Area (um^2) Average Power (mW)

1000 952.285 20790 0.189

Minimum Clock Period Synthesis at 55ns

64ps is negligible slack with a clock period of tens of nanoseconds.

Minimum clock period: 55 ns

Maximum clock frequency: 18.18MHz

Can take 18 million samples a second.

Must wait two clock cycles after initialization for output.

Innovus Reports
After performing the RTL synthesis, we have done encounter layout/Innovus layout and the resultant

power, area & timing reports are shown below.

Figure 8 Encounter synthesized layout

Figure 9 Encounter area report

Figure 10 Encounter power report

Figure 11 Encounter Timing report

Clock Period (ns) Slack (ns) Area (um^2) Average Power (mW)

1000 944.409 20884 0.289

Test Results
We tested our register file by giving it a series of temperature inputs and ensuring that the module

calculated the correct Tsum and Tsum_squared values. We added a terminal input to show the expected

and the actual Tsum and Tsum_squared values.

Figure 12: Modelsim Waveforms for register_file_tb.v

Running tests for register_file module

Tsum_actual= x | Tsum_expected= x | Tsum_square_actual= x | Tsum_square_expected= x

Tsum_actual= 1 | Tsum_expected= 1 | Tsum_square_actual= 1 | Tsum_square_expected= 1

Tsum_actual= 3 | Tsum_expected= 3 | Tsum_square_actual= 5 | Tsum_square_expected= 5

Tsum_actual= 6 | Tsum_expected= 6 | Tsum_square_actual= 14 | Tsum_square_expected= 14

Tsum_actual= 10 | Tsum_expected= 10 | Tsum_square_actual= 30 | Tsum_square_expected= 30

Tsum_actual= 15 | Tsum_expected= 15 | Tsum_square_actual= 55 | Tsum_square_expected= 55

Tsum_actual= 21 | Tsum_expected= 21 | Tsum_square_actual= 91 | Tsum_square_expected= 91

Tsum_actual= 28 | Tsum_expected= 28 | Tsum_square_actual= 140 | Tsum_square_expected= 140

Tsum_actual= 36 | Tsum_expected= 36 | Tsum_square_actual= 204 | Tsum_square_expected= 204

Tsum_actual= 45 | Tsum_expected= 45 | Tsum_square_actual= 285 | Tsum_square_expected= 285

Tsum_actual= 55 | Tsum_expected= 55 | Tsum_square_actual= 385 | Tsum_square_expected= 385

Tsum_actual= 66 | Tsum_expected= 66 | Tsum_square_actual= 506 | Tsum_square_expected= 506

Tsum_actual= 78 | Tsum_expected= 78 | Tsum_square_actual= 650 | Tsum_square_expected= 650

Tsum_actual= 91 | Tsum_expected= 91 | Tsum_square_actual= 819 | Tsum_square_expected= 819

Tsum_actual= 105 | Tsum_expected= 105 | Tsum_square_actual= 1015 | Tsum_square_expected= 1015

Tsum_actual= 119 | Tsum_expected= 119 | Tsum_square_actual= 1239 | Tsum_square_expected= 1239

Tsum_actual= 133 | Tsum_expected= 133 | Tsum_square_actual= 1491 | Tsum_square_expected= 1491

All tests for register_file module passed

Since the given testbench did not operate correctly, we made our own testbench using the same data as

the test cases given to us, just inserted directly into the Verilog testbench file (source code shown at the

end of the report).

Figure 13: Modelsim Waveforms from 100 sample test case (NOAA_TEST_DATA_100_n.xlsx)

Here we can see from the waveform that the module generates the expected output (highlighted in

yellow) 2 clock cycles after the input (highlighted in blue) was originally given.

We also added an output to the terminal, showing the expected value and the actual value for AVG_SD:

AVG_SD (actual) = 1383 | AVG_SD (expected) = 1383

AVG_SD (actual) = 905 | AVG_SD (expected) = 905

AVG_SD (actual) = 1098 | AVG_SD (expected) = 1098

AVG_SD (actual) = 1435 | AVG_SD (expected) = 1435

AVG_SD (actual) = 956 | AVG_SD (expected) = 956

AVG_SD (actual) = 929 | AVG_SD (expected) = 929

AVG_SD (actual) = 895 | AVG_SD (expected) = 895

AVG_SD (actual) = 1700 | AVG_SD (expected) = 1700

AVG_SD (actual) = 1838 | AVG_SD (expected) = 1838

AVG_SD (actual) = 1932 | AVG_SD (expected) = 1932

AVG_SD (actual) = 1793 | AVG_SD (expected) = 1793

AVG_SD (actual) = 906 | AVG_SD (expected) = 906

AVG_SD (actual) = 1790 | AVG_SD (expected) = 1790

AVG_SD (actual) = 884 | AVG_SD (expected) = 884

AVG_SD (actual) = 908 | AVG_SD (expected) = 908

AVG_SD (actual) = 1770 | AVG_SD (expected) = 1770

AVG_SD (actual) = 1872 | AVG_SD (expected) = 1872

AVG_SD (actual) = 912 | AVG_SD (expected) = 912

AVG_SD (actual) = 1959 | AVG_SD (expected) = 1959

AVG_SD (actual) = 1948 | AVG_SD (expected) = 1948

AVG_SD (actual) = 942 | AVG_SD (expected) = 942

AVG_SD (actual) = 969 | AVG_SD (expected) = 969

AVG_SD (actual) = 962 | AVG_SD (expected) = 962

AVG_SD (actual) = 1825 | AVG_SD (expected) = 1825

AVG_SD (actual) = 2018 | AVG_SD (expected) = 2018

AVG_SD (actual) = 2007 | AVG_SD (expected) = 2007

AVG_SD (actual) = 2000 | AVG_SD (expected) = 2000

AVG_SD (actual) = 937 | AVG_SD (expected) = 937

AVG_SD (actual) = 1964 | AVG_SD (expected) = 1964

AVG_SD (actual) = 815 | AVG_SD (expected) = 815

AVG_SD (actual) = 852 | AVG_SD (expected) = 852

AVG_SD (actual) = 702 | AVG_SD (expected) = 702

AVG_SD (actual) = 706 | AVG_SD (expected) = 706

AVG_SD (actual) = 832 | AVG_SD (expected) = 832

AVG_SD (actual) = 822 | AVG_SD (expected) = 822

AVG_SD (actual) = 922 | AVG_SD (expected) = 922

AVG_SD (actual) = 889 | AVG_SD (expected) = 889

AVG_SD (actual) = 913 | AVG_SD (expected) = 913

AVG_SD (actual) = 1697 | AVG_SD (expected) = 1697

AVG_SD (actual) = 1699 | AVG_SD (expected) = 1699

AVG_SD (actual) = 1799 | AVG_SD (expected) = 1799

AVG_SD (actual) = 1607 | AVG_SD (expected) = 1607

AVG_SD (actual) = 1559 | AVG_SD (expected) = 1559

AVG_SD (actual) = 1052 | AVG_SD (expected) = 1052

AVG_SD (actual) = 988 | AVG_SD (expected) = 988

AVG_SD (actual) = 1709 | AVG_SD (expected) = 1709

AVG_SD (actual) = 1691 | AVG_SD (expected) = 1691

AVG_SD (actual) = 1812 | AVG_SD (expected) = 1812

AVG_SD (actual) = 1734 | AVG_SD (expected) = 1734

AVG_SD (actual) = 965 | AVG_SD (expected) = 965

AVG_SD (actual) = 1876 | AVG_SD (expected) = 1876

AVG_SD (actual) = 1806 | AVG_SD (expected) = 1806

AVG_SD (actual) = 944 | AVG_SD (expected) = 944

AVG_SD (actual) = 2098 | AVG_SD (expected) = 2098

AVG_SD (actual) = 1914 | AVG_SD (expected) = 1914

AVG_SD (actual) = 1898 | AVG_SD (expected) = 1898

AVG_SD (actual) = 1835 | AVG_SD (expected) = 1835

AVG_SD (actual) = 1052 | AVG_SD (expected) = 1052

AVG_SD (actual) = 1091 | AVG_SD (expected) = 1091

AVG_SD (actual) = 1003 | AVG_SD (expected) = 1003

AVG_SD (actual) = 1054 | AVG_SD (expected) = 1054

AVG_SD (actual) = 1104 | AVG_SD (expected) = 1104

AVG_SD (actual) = 1112 | AVG_SD (expected) = 1112

AVG_SD (actual) = 1112 | AVG_SD (expected) = 1112

AVG_SD (actual) = 1038 | AVG_SD (expected) = 1038

AVG_SD (actual) = 1440 | AVG_SD (expected) = 1440

AVG_SD (actual) = 961 | AVG_SD (expected) = 961

AVG_SD (actual) = 901 | AVG_SD (expected) = 901

AVG_SD (actual) = 943 | AVG_SD (expected) = 943

AVG_SD (actual) = 1502 | AVG_SD (expected) = 1502

AVG_SD (actual) = 1005 | AVG_SD (expected) = 1005

AVG_SD (actual) = 1030 | AVG_SD (expected) = 1030

AVG_SD (actual) = 1028 | AVG_SD (expected) = 1028

AVG_SD (actual) = 1755 | AVG_SD (expected) = 1755

AVG_SD (actual) = 961 | AVG_SD (expected) = 961

AVG_SD (actual) = 957 | AVG_SD (expected) = 957

AVG_SD (actual) = 960 | AVG_SD (expected) = 960

AVG_SD (actual) = 1016 | AVG_SD (expected) = 1016

AVG_SD (actual) = 1002 | AVG_SD (expected) = 1002

AVG_SD (actual) = 1055 | AVG_SD (expected) = 1055

AVG_SD (actual) = 1439 | AVG_SD (expected) = 1439

AVG_SD (actual) = 1552 | AVG_SD (expected) = 1552

AVG_SD (actual) = 1448 | AVG_SD (expected) = 1448

AVG_SD (actual) = 1260 | AVG_SD (expected) = 1260

AVG_SD (actual) = 1368 | AVG_SD (expected) = 1368

AVG_SD (actual) = 1281 | AVG_SD (expected) = 1281

AVG_SD (actual) = 1244 | AVG_SD (expected) = 1244

AVG_SD (actual) = 775 | AVG_SD (expected) = 775

AVG_SD (actual) = 764 | AVG_SD (expected) = 764

AVG_SD (actual) = 1467 | AVG_SD (expected) = 1467

AVG_SD (actual) = 856 | AVG_SD (expected) = 856

AVG_SD (actual) = 1685 | AVG_SD (expected) = 1685

AVG_SD (actual) = 880 | AVG_SD (expected) = 880

AVG_SD (actual) = 816 | AVG_SD (expected) = 816

AVG_SD (actual) = 940 | AVG_SD (expected) = 940

AVG_SD (actual) = 950 | AVG_SD (expected) = 950

AVG_SD (actual) = 951 | AVG_SD (expected) = 951

AVG_SD (actual) = 1852 | AVG_SD (expected) = 1852

AVG_SD (actual) = 918 | AVG_SD (expected) = 918

AVG_SD (actual) = 909 | AVG_SD (expected) = 909

All tests passed.

** Note: $stop : /home/astee/ee465/FinalProject/NOAA_tb.v(51)

Time: 2130 ns Iteration: 1 Instance: /NOAA_tb50;

Conclusion

Difficulties and learning experiences
Overall, this project was a successful exercise in understanding a problem, come up with a solution, and

implement that solution in software through teamwork. The Babylonian method of calculating the

standard deviation was a new formula that we learned through this project. We learned that by

combining the multiple expressions for standard deviation, we could come up with a much more

workable formula that fit our use case very well.

As far as difficulties, we learned in this project that it most certainly would have made the software

development process smoother if we drew the schematic first, and then implemented the schematic in

Verilog. In our approach, we wrote the software first, and then drew a schematic based on our Verilog

code. Drawing the schematic first would have been a much more systematic approach, where we could

have ironed out details ahead of time and made debugging the Verilog code much easier.

Feedback on project experience
Overall, this project was a good exercise in using HDL to solve a practical problem. The project left a lot

of room for teammates to coordinate their efforts and come up with a unique design to solve the given

problem.

As far as how the project could improve, I think it would be helpful to have a more gradual ramp up to

the difficulty that this project presents in preceding labs. I felt like this project was a much more

complex task than anything we had done in labs previously. Although they may not have had anything to

do with the project directly, I think it would help bring more success if we had implemented more

sophisticated HDL designs in labs before this.

Source Code

register_file.v

`timescale 1ns/1ps

module register_file(RESET, TN, SAMPLE, CLK, Tsum, Tsum_square);

input RESET;

input [11:0] TN;

input SAMPLE;

input CLK;

output [15:0] Tsum;

output [27:0] Tsum_square;

reg[11:0] TN1, TN2, TN3, TN4, TN5, TN6, TN7;

reg[11:0] TN8, TN9, TN10, TN11, TN12, TN13, TN14;

reg[23:0] TN1_sqr, TN2_sqr, TN3_sqr, TN4_sqr, TN5_sqr, TN6_sqr, TN7_sqr;

reg[23:0] TN8_sqr, TN9_sqr, TN10_sqr, TN11_sqr, TN12_sqr, TN13_sqr, TN14_sqr;

always @ (posedge CLK)

begin

 if(RESET == 1'b1) begin

 TN1 <= 1'b0;

 TN2 <= 1'b0;

 TN3 <= 1'b0;

 TN4 <= 1'b0;

 TN5 <= 1'b0;

 TN6 <= 1'b0;

 TN7 <= 1'b0;

 TN8 <= 1'b0;

 TN9 <= 1'b0;

 TN10 <= 1'b0;

 TN11 <= 1'b0;

 TN12 <= 1'b0;

 TN13 <= 1'b0;

 TN14 <= 1'b0;

 TN1_sqr <= 1'b0;

 TN2_sqr <= 1'b0;

 TN3_sqr <= 1'b0;

 TN4_sqr <= 1'b0;

 TN5_sqr <= 1'b0;

 TN6_sqr <= 1'b0;

 TN7_sqr <= 1'b0;

 TN8_sqr <= 1'b0;

 TN9_sqr <= 1'b0;

 TN10_sqr <= 1'b0;

 TN11_sqr <= 1'b0;

 TN12_sqr <= 1'b0;

 TN13_sqr <= 1'b0;

 TN14_sqr <= 1'b0;

 end

 else begin

 if(SAMPLE) begin

 TN1 <= TN;

 TN2 <= TN1;

 TN3 <= TN2;

 TN4 <= TN3;

 TN5 <= TN4;

 TN6 <= TN5;

 TN7 <= TN6;

 TN8 <= TN7;

 TN9 <= TN8;

 TN10 <= TN9;

 TN11 <= TN10;

 TN12 <= TN11;

 TN13 <= TN12;

 TN14 <= TN13;

 TN1_sqr <= TN**2;

 TN2_sqr <= TN1_sqr;

 TN3_sqr <= TN2_sqr;

 TN4_sqr <= TN3_sqr;

 TN5_sqr <= TN4_sqr;

 TN6_sqr <= TN5_sqr;

 TN7_sqr <= TN6_sqr;

 TN8_sqr <= TN7_sqr;

 TN9_sqr <= TN8_sqr;

 TN10_sqr <= TN9_sqr;

 TN11_sqr <= TN10_sqr;

 TN12_sqr <= TN11_sqr;

 TN13_sqr <= TN12_sqr;

 TN14_sqr <= TN13_sqr;

 end

 end

end

assign Tsum = TN1 + TN2 + TN3 + TN4 + TN5 + TN6 + TN7 + TN8 + TN9 + TN10 + TN11 +

 TN12 + TN13 + TN14;

assign Tsum_square = TN1_sqr + TN2_sqr + TN3_sqr + TN4_sqr + TN5_sqr + TN6_sqr +

TN7_sqr + TN8_sqr + TN9_sqr + TN10_sqr + TN11_sqr + TN12_sqr + TN13_sqr + TN14_sq

r;

endmodule

register_file_tb.v

`include "register_file.v"

`timescale 1ns/1ns

module register_file_tb;

reg reset;

reg [11:0] tn;

reg sample;

reg clk;

wire [15:0] tsum_actual;

reg [15:0] tsum_expected;

wire [27:0] tsum_square_actual;

reg [27:0] tsum_square_expected;

always #10 clk <= ~clk;

integer i;

initial begin

 $display("Running tests for register_file module");

 $display("Tsum_actual=%d | Tsum_expected=%d | Tsum_square_actual=%d | Tsum_sq

uare_expected=%d",

 tsum_actual,

 tsum_expected,

 tsum_square_actual,

 tsum_square_expected

);

 clk = 0;

 reset = 1;

 sample = 0;

 #40

 reset = 0;

 sample = 1;

 for (i = 1; i <= 16; i = i + 1) begin

 tn = i;

 #10

 case (i)

 1: begin

 tsum_expected = 1;

 tsum_square_expected = 1**2;

 end

 2: begin

 tsum_expected = 1+2;

 tsum_square_expected = 1**2 + 2**2;

 end

 3: begin

 tsum_expected = 1+2+3;

 tsum_square_expected = 1**2 + 2**2 + 3**2;

 end

 4: begin

 tsum_expected = 1+2+3+4;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2;

 end

 5: begin

 tsum_expected = 1+2+3+4+5;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2;

 end

 6: begin

 tsum_expected = 1+2+3+4+5+6;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2;

 end

 7: begin

 tsum_expected = 1+2+3+4+5+6+7;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2;

 end

 8: begin

 tsum_expected = 1+2+3+4+5+6+7+8;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2;

 end

 9: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2;

 end

 10: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2;

 end

 11: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10+11;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2 + 11**2;

 end

 12: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10+11+12;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2 + 11**2 + 12**2;

 end

 13: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10+11+12+13;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2 + 11**2 + 12**2 + 13**2;

 end

 14: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10+11+12+13+14;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2 + 11**2 + 12**2 + 13**2 + 14**2;

 end

 15: begin

 tsum_expected = 2+3+4+5+6+7+8+9+10+11+12+13+14+15;

 tsum_square_expected = 2**2 + 3**2 + 4**2 + 5**2 + 6**2 + 7**2 +

8**2 + 9**2 + 10**2 + 11**2 + 12**2 + 13**2 + 14**2 + 15**2;

 end

 16: begin

 tsum_expected = 3+4+5+6+7+8+9+10+11+12+13+14+15+16;

 tsum_square_expected = 3**2 + 4**2 + 5**2 + 6**2 + 7**2 + 8**2 +

9**2 + 10**2 + 11**2 + 12**2 + 13**2 + 14**2 + 15**2 + 16**2;

 end

 endcase

 #5

 $display("Tsum_actual=%d | Tsum_expected=%d | Tsum_square_actual=%d | Tsu

m_square_expected=%d",

 tsum_actual,

 tsum_expected,

 tsum_square_actual,

 tsum_square_expected

);

 if (tsum_expected != tsum_actual || tsum_square_expected != tsum_square_

actual) begin

 $error("Wrong output for iteration: %d", i);

 $stop;

 end

 #5;

 end

 $display("All tests for register_file module passed");

end

register_file reg_file(

 .RESET(reset),

 .TN(tn),

 .SAMPLE(sample),

 .CLK(clk),

 .Tsum(tsum_actual),

 .Tsum_square(tsum_square_actual)

);

endmodule

calculate_numerator_denominator.v

`timescale 1ns/1ns

module calculate_numerator_denominator(

 input [11:0] sigma_hat,

 input [3:0] N,

 input [15:0] Tsum,

 input [27:0] Tsum_square,

 output [32:0] numerator, // can be up to 33 bits large

 output [21:0] denominator

);

assign numerator = ((sigma_hat**2) * (N**2)) + (N*Tsum_square) - (Tsum**2);

assign denominator = 2 * (N**2) * sigma_hat;

endmodule

calculate_numerator_denominator_tb.v

NOAA_module.v

`include "register_file.v"

`include "calculate_numerator_denominator.v"

`timescale 1ns/1ns

module NOAA_module(

 input RESET,

 input MODE,

 input [11:0] TN,

 input CLK,

 output reg SAMPLE,

 output reg DONE, // Need to put calc_num and calc_denom on the clk to set DON

E appropriately (maybe)

 output reg [11:0] AVG_SD

);

reg [3:0] N;

wire [3:0] N_for_calc;

reg [3:0] N_hold;

wire [15:0] Tsum;

reg [15:0] Tsum_hold;

wire [15:0] Tsum_calc;

wire [27:0] Tsum_square;

reg [27:0] Tsum_square_hold;

wire [27:0] Tsum_square_calc;

reg mode1; // used to transfer keep the mode that was given with the input

reg mode2;

reg [1:0] calc_state; // in what stage of the calculation pipeline are we in

//(basically used when the module is reset to get the pipeline going)

reg [11:0] sigma_hat;

wire [11:0] sigma_hat_for_calc;

wire [32:0] numerator;

reg [32:0] numerator_store;

wire [21:0] denominator;

reg [21:0] denominator_store;

wire [1:0] quotient; // needs to be 13 bits instead of 12 bits to leave room for

rounding

wire [11:0] quotient_rounded;

// This is an idea to save switching for these regs, idk if it'll work

assign N_for_calc = mode1 ? N : N_hold;

assign Tsum_calc = (mode1) ? Tsum : Tsum_hold;

assign Tsum_square_calc = (mode1) ? Tsum_square : Tsum_square_hold;

assign quotient = numerator_store / denominator_store;

assign quotient_rounded[11:0] = quotient[0]?(quotient[12:1]+1):quotient[12:1]; //

 round up if needed

assign sigma_hat_for_calc = (mode1 && mode2) ? quotient_rounded : sigma_hat; //

 use the latest sigma_hat if we've calculated a two stddev's in a row

always @ (posedge CLK)

begin

 if (RESET)

 begin

 SAMPLE <= 1'b0;

 DONE <= 1'b0;

 sigma_hat <= 12'b010000000000; // 32deg F

 AVG_SD <= 0;

 N <= 0;

 calc_state <= 0;

 numerator_store <= 0;

 denominator_store <= 0;

 mode1 <= 0;

 mode2 <= 0;

 end

 else

 begin

 SAMPLE <= 1'b1; // should be able to sample every CLK cycle

 if (SAMPLE)

 begin

 if (N < 14) begin

 N <= N + 1;

 end

 Tsum_hold <= Tsum_calc;

 Tsum_square_hold <= Tsum_square_calc;

 N_hold <= N_for_calc;

 mode1 <= MODE;

 calc_state[0] <= 1;

 end

 if (calc_state[0]) // data available in first stage

 begin

 numerator_store <= (mode1) ? (numerator << 1) : (Tsum << 1); //

 not sure why I have to multiply the numerator by 4, but whatever

 denominator_store <= (mode1) ? (denominator) : (N);

 calc_state[1] <= 1;

 mode2 <= mode1;

 end

 if (calc_state[1]) // data available in the second stage

 begin

 if (mode2 == 1'b1) // update sigma_hat if we've calculated a new st

ddev

 sigma_hat <= quotient_rounded;

 AVG_SD <= quotient_rounded; // perform the division

 DONE <= 1;

 end

 else

 DONE <= 0; // no new output ready yet

 end

end

register_file reg_file(

 .RESET(RESET),

 .TN(TN),

 .SAMPLE(SAMPLE),

 .CLK(CLK),

 .Tsum(Tsum),

 .Tsum_square(Tsum_square)

);

calculate_numerator_denominator calc_num(

 .N(N_for_calc),

 .sigma_hat(sigma_hat_for_calc),

 .Tsum(Tsum_calc),

 .Tsum_square(Tsum_square_calc),

 .numerator(numerator),

 .denominator(denominator)

);

endmodule

register_file_tb.v

`include "register_file.v"

`timescale 1ns/1ns

module register_file_tb;

reg reset;

reg [11:0] tn;

reg sample;

reg clk;

wire [15:0] tsum_actual;

reg [15:0] tsum_expected;

wire [27:0] tsum_square_actual;

reg [27:0] tsum_square_expected;

always #10 clk <= ~clk;

integer i;

initial begin

 $display("Running tests for register_file module");

 $display("Tsum_actual=%d | Tsum_expected=%d | Tsum_square_actual=%d | Tsum_sq

uare_expected=%d",

 tsum_actual,

 tsum_expected,

 tsum_square_actual,

 tsum_square_expected

);

 clk = 0;

 reset = 1;

 sample = 0;

 #40

 reset = 0;

 sample = 1;

 for (i = 1; i <= 16; i = i + 1) begin

 tn = i;

 #10

 case (i)

 1: begin

 tsum_expected = 1;

 tsum_square_expected = 1**2;

 end

 2: begin

 tsum_expected = 1+2;

 tsum_square_expected = 1**2 + 2**2;

 end

 3: begin

 tsum_expected = 1+2+3;

 tsum_square_expected = 1**2 + 2**2 + 3**2;

 end

 4: begin

 tsum_expected = 1+2+3+4;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2;

 end

 5: begin

 tsum_expected = 1+2+3+4+5;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2;

 end

 6: begin

 tsum_expected = 1+2+3+4+5+6;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2;

 end

 7: begin

 tsum_expected = 1+2+3+4+5+6+7;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2;

 end

 8: begin

 tsum_expected = 1+2+3+4+5+6+7+8;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2;

 end

 9: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2;

 end

 10: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2;

 end

 11: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10+11;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2 + 11**2;

 end

 12: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10+11+12;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2 + 11**2 + 12**2;

 end

 13: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10+11+12+13;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2 + 11**2 + 12**2 + 13**2;

 end

 14: begin

 tsum_expected = 1+2+3+4+5+6+7+8+9+10+11+12+13+14;

 tsum_square_expected = 1**2 + 2**2 + 3**2 + 4**2 + 5**2 + 6**2 +

7**2 + 8**2 + 9**2 + 10**2 + 11**2 + 12**2 + 13**2 + 14**2;

 end

 15: begin

 tsum_expected = 2+3+4+5+6+7+8+9+10+11+12+13+14+15;

 tsum_square_expected = 2**2 + 3**2 + 4**2 + 5**2 + 6**2 + 7**2 +

8**2 + 9**2 + 10**2 + 11**2 + 12**2 + 13**2 + 14**2 + 15**2;

 end

 16: begin

 tsum_expected = 3+4+5+6+7+8+9+10+11+12+13+14+15+16;

 tsum_square_expected = 3**2 + 4**2 + 5**2 + 6**2 + 7**2 + 8**2 +

9**2 + 10**2 + 11**2 + 12**2 + 13**2 + 14**2 + 15**2 + 16**2;

 end

 endcase

 #5

 $display("Tsum_actual=%d | Tsum_expected=%d | Tsum_square_actual=%d | Tsu

m_square_expected=%d",

 tsum_actual,

 tsum_expected,

 tsum_square_actual,

 tsum_square_expected

);

 if (tsum_expected != tsum_actual || tsum_square_expected != tsum_square_

actual) begin

 $error("Wrong output for iteration: %d", i);

 $stop;

 end

 #5;

 end

 $display("All tests for register_file module passed");

end

register_file reg_file(

 .RESET(reset),

 .TN(tn),

 .SAMPLE(sample),

 .CLK(clk),

 .Tsum(tsum_actual),

 .Tsum_square(tsum_square_actual)

);

endmodule

NOAA_module_tb.v

`timescale 1ns/1ns

module NOAA_tb();

 // Ports of __NOAA_Module__

 reg CLK, RESET, MODE;

 reg [11:0] TN;

 wire SAMPLE, DONE;

 wire [11:0] AVG_SD;

 reg [11:0] result_expected;

 reg [11:0] result_expected_0;

 reg [11:0] result_expected_1;

 reg [11:0] result_expected_2;

 initial begin

 CLK = 0;

 RESET = 1;

 result_expected = 0;

 result_expected_0 = 0;

 result_expected_1 = 0;

 result_expected_2 = 0;

 end

 initial begin

 #50

 RESET = 0;

 end

 always #10

 begin

 CLK = ~CLK;

 end

 always @ (posedge CLK)

 begin

 result_expected = result_expected_0;

 result_expected_0 = result_expected_1;

 result_expected_1 = result_expected_2;

 if (DONE)

 begin

 $display("AVG_SD (actual) = %d | AVG_SD (expected) = %d", AVG_SD, result_e

xpected);

 if (AVG_SD != result_expected)

 begin

 $error("Wrong output generated!");

 $stop;

 end

 end

 end

// copied numbers from NOAA_Test_Data_30_n.xlsx

 initial begin // numbers from test dataset of 100

 #65

 TN = 1383; MODE = 0; result_expected_2 = 1383;

 #20

 TN = 3177; MODE = 1; result_expected_2 = 905;

 #20

 TN = 593; MODE = 1; result_expected_2 = 1098;

 #20

 TN = 586; MODE = 0; result_expected_2 = 1435;

 #20

 TN = 1449; MODE = 1; result_expected_2 = 956;

 #20

 TN = 2362; MODE = 1; result_expected_2 = 929;

 #20

 TN = 2290; MODE = 1; result_expected_2 = 895;

 #20

 TN = 1763; MODE = 0; result_expected_2 = 1700;

 #20

 TN = 2940; MODE = 0; result_expected_2 = 1838;

 #20

 TN = 2772; MODE = 0; result_expected_2 = 1932;

 #20

 TN = 411; MODE = 0; result_expected_2 = 1793;

 #20

 TN = 1767; MODE = 1; result_expected_2 = 906;

 #20

 TN = 1782; MODE = 0; result_expected_2 = 1790;

 #20

 TN = 2862; MODE = 1; result_expected_2 = 884;

 #20

 TN = 2867; MODE = 1; result_expected_2 = 908;

 #20

 TN = 329; MODE = 0; result_expected_2 = 1770;

 #20

 TN = 2022; MODE = 0; result_expected_2 = 1872;

 #20

 TN = 269; MODE = 1; result_expected_2 = 912;

 #20

 TN = 2993; MODE = 0; result_expected_2 = 1959;

 #20

 TN = 2211; MODE = 0; result_expected_2 = 1948;

 #20

 TN = 1829; MODE = 1; result_expected_2 = 942;

 #20

 TN = 2821; MODE = 1; result_expected_2 = 969;

 #20

 TN = 984; MODE = 1; result_expected_2 = 962;

 #20

 TN = 2398; MODE = 0; result_expected_2 = 1825;

 #20

 TN = 3115; MODE = 0; result_expected_2 = 2018;

 #20

 TN = 1613; MODE = 0; result_expected_2 = 2007;

 #20

 TN = 1691; MODE = 0; result_expected_2 = 2000;

 #20

 TN = 3156; MODE = 1; result_expected_2 = 937;

 #20

 TN = 2062; MODE = 0; result_expected_2 = 1964;

 #20

 TN = 1396; MODE = 1; result_expected_2 = 815;

 #20

 TN = 3105; MODE = 1; result_expected_2 = 852;

 #20

 TN = 1884; MODE = 1; result_expected_2 = 702;

 #20

 TN = 1136; MODE = 1; result_expected_2 = 706;

 #20

 TN = 446; MODE = 1; result_expected_2 = 832;

 #20

 TN = 2113; MODE = 1; result_expected_2 = 822;

 #20

 TN = 124; MODE = 1; result_expected_2 = 922;

 #20

 TN = 1982; MODE = 1; result_expected_2 = 889;

 #20

 TN = 2814; MODE = 1; result_expected_2 = 913;

 #20

 TN = 234; MODE = 0; result_expected_2 = 1697;

 #20

 TN = 1643; MODE = 0; result_expected_2 = 1699;

 #20

 TN = 3087; MODE = 0; result_expected_2 = 1799;

 #20

 TN = 476; MODE = 0; result_expected_2 = 1607;

 #20

 TN = 1388; MODE = 0; result_expected_2 = 1559;

 #20

 TN = 3003; MODE = 1; result_expected_2 = 1052;

 #20

 TN = 2354; MODE = 1; result_expected_2 = 988;

 #20

 TN = 3132; MODE = 0; result_expected_2 = 1709;

 #20

 TN = 876; MODE = 0; result_expected_2 = 1691;

 #20

 TN = 2139; MODE = 0; result_expected_2 = 1812;

 #20

 TN = 1026; MODE = 0; result_expected_2 = 1734;

 #20

 TN = 894; MODE = 1; result_expected_2 = 965;

 #20

 TN = 3195; MODE = 0; result_expected_2 = 1876;

 #20

 TN = 1834; MODE = 0; result_expected_2 = 1806;

 #20

 TN = 3067; MODE = 1; result_expected_2 = 944;

 #20

 TN = 2897; MODE = 0; result_expected_2 = 2098;

 #20

 TN = 517; MODE = 0; result_expected_2 = 1914;

 #20

 TN = 252; MODE = 0; result_expected_2 = 1898;

 #20

 TN = 501; MODE = 0; result_expected_2 = 1835;

 #20

 TN = 1086; MODE = 1; result_expected_2 = 1052;

 #20

 TN = 265; MODE = 1; result_expected_2 = 1091;

 #20

 TN = 1244; MODE = 1; result_expected_2 = 1003;

 #20

 TN = 40; MODE = 1; result_expected_2 = 1054;

 #20

 TN = 2831; MODE = 1; result_expected_2 = 1104;

 #20

 TN = 2097; MODE = 1; result_expected_2 = 1112;

 #20

 TN = 881; MODE = 1; result_expected_2 = 1112;

 #20

 TN = 2309; MODE = 1; result_expected_2 = 1038;

 #20

 TN = 2167; MODE = 0; result_expected_2 = 1440;

 #20

 TN = 1897; MODE = 1; result_expected_2 = 961;

 #20

 TN = 186; MODE = 1; result_expected_2 = 901;

 #20

 TN = 2506; MODE = 1; result_expected_2 = 943;

 #20

 TN = 3019; MODE = 0; result_expected_2 = 1502;

 #20

 TN = 328; MODE = 1; result_expected_2 = 1005;

 #20

 TN = 2532; MODE = 1; result_expected_2 = 1030;

 #20

 TN = 3103; MODE = 1; result_expected_2 = 1028;

 #20

 TN = 670; MODE = 0; result_expected_2 = 1755;

 #20

 TN = 1308; MODE = 1; result_expected_2 = 961;

 #20

 TN = 740; MODE = 1; result_expected_2 = 957;

 #20

 TN = 2196; MODE = 1; result_expected_2 = 960;

 #20

 TN = 218; MODE = 1; result_expected_2 = 1016;

 #20

 TN = 1246; MODE = 1; result_expected_2 = 1002;

 #20

 TN = 121; MODE = 1; result_expected_2 = 1055;

 #20

 TN = 1979; MODE = 0; result_expected_2 = 1439;

 #20

 TN = 1764; MODE = 0; result_expected_2 = 1552;

 #20

 TN = 1041; MODE = 0; result_expected_2 = 1448;

 #20

 TN = 393; MODE = 0; result_expected_2 = 1260;

 #20

 TN = 1834; MODE = 0; result_expected_2 = 1368;

 #20

 TN = 1324; MODE = 0; result_expected_2 = 1281;

 #20

 TN = 2587; MODE = 0; result_expected_2 = 1244;

 #20

 TN = 943; MODE = 1; result_expected_2 = 775;

 #20

 TN = 2227; MODE = 1; result_expected_2 = 764;

 #20

 TN = 2659; MODE = 0; result_expected_2 = 1467;

 #20

 TN = 2632; MODE = 1; result_expected_2 = 856;

 #20

 TN = 2837; MODE = 0; result_expected_2 = 1685;

 #20

 TN = 2875; MODE = 1; result_expected_2 = 880;

 #20

 TN = 674; MODE = 1; result_expected_2 = 816;

 #20

 TN = 58; MODE = 1; result_expected_2 = 940;

 #20

 TN = 2429; MODE = 1; result_expected_2 = 950;

 #20

 TN = 1035; MODE = 1; result_expected_2 = 951;

 #20

 TN = 1818; MODE = 0; result_expected_2 = 1852;

 #20

 TN = 2943; MODE = 1; result_expected_2 = 918;

 #20

 TN = 1528; MODE = 1; result_expected_2 = 909;

 #20;

 end

 NOAA_module IoT_Motes(

 .CLK(CLK),

 .RESET(RESET),

 .MODE(MODE),

 .TN(TN),

 .SAMPLE(SAMPLE),

 .DONE(DONE),

 .AVG_SD(AVG_SD)

);

endmodule

